liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical predictions of indoor climate in large industrial premises: A comparison between different k–ε models supported by field measurements
Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
2007 (English)In: Building and Environment, ISSN 0360-1323, Vol. 42, no 11, 3872-3882 p.Article in journal (Refereed) Published
Abstract [en]

This paper explores the benefits of using computational fluid dynamics (CFD) as a tool for prediction of indoor environment in large and complex industrial premises, in this case a packaging facility. This paper also presents a comparison between three eddy-viscosity turbulence models, i.e. the standard k–ε, the RNG k–ε, and the realizable k–ε, used for predictions of the flow pattern and temperature distribution in this large industrial facility. The predictions are compared with field measurements and the RNG k–ε model has been found to be the one most concurrent with the measured values.

The paper also shows that a 50% reduction in the supply airflow rate can be an efficient energy efficiency measure, for the studied packaging facility, without compromising either product safety or thermal comfort. When implementing this efficiency measure it is predicted to lead to a reduction of the use of electricity and district heating by 85%, respectively, 61%. The energy use is calculated using IDA ICE 3.0. The ventilation effectiveness for heat removal (εt) and percentage dissatisfied (PD-index) are used to evaluate the indoor climate

Place, publisher, year, edition, pages
Elsevier , 2007. Vol. 42, no 11, 3872-3882 p.
Keyword [en]
CFD, Industrial ventilation, Indoor climate, Energy
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-15522DOI: 10.1016/j.buildenv.2006.11.005OAI: oai:DiVA.org:liu-15522DiVA: diva2:117482
Available from: 2008-11-14 Created: 2008-11-14 Last updated: 2009-05-12
In thesis
1. Energy efficiency and ventilation in Swedish industries barriers, simulation and control strategy
Open this publication in new window or tab >>Energy efficiency and ventilation in Swedish industries barriers, simulation and control strategy
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The energy issue is presently in focus worldwide. This is not only due to increasing environmental concern regarding energy related emissions, but also due to the trend of increasing energy prices. Energy usage in the industrial sector in Sweden today represents about one third of the national energy use. A substantial part of that is related to support processes such as heating, ventilation and cooling systems. These systems are important as they are related both to energy cost and indoor climate management as well as to the health of the occupants.

The purpose of this thesis is to reach a more comprehensive view on industrial energy efficiency and indoor environment issues related to industrial ventilation. This has been studied in three themes where the first part addresses barriers to energy efficiency in Swedish industries, the second theme discuss simulation as decision support, and the third studies the variable air volume system in industrial facilities.

In the first theme three different studies were made: the first studies non-energy intensive companies in Oskarshamn in Sweden, the second studies the energy intensive foundry industry and the third study was part of an evaluation of a large energy efficiency program called Project Highland. These studies had several findings in common, such as the importance of a strategic view on the energy issue and the presence of a person with real ambition with power over investment decisions related to energy issues at the company. The studies also show that several information related barriers are important for decision makers at the studied companies. This shows that information related barriers are one reason in why energy efficient equipment is not implemented.

In the second theme the use of simulation in the form of Computational Fluid Dynamics (CFD) and Building Energy Simulation (BES) are used as decision support for industrial ventilation related studies at two different industries, one foundry is investigated and one dairy. BES has mainly been used to simulate energy and power related parameters while CFD was used to give a detailed description of the indoor and product environment. Together these methods can be used to better evaluate the energy, indoor and product environment and thus enable the implementation of more efficient heating, ventilation and air-conditioning systems.

In the third theme the use of Variable Air Volume (VAV) systems was evaluated, and was found to be an efficient way to reduce energy use at the studied sites. At the studied foundry the VAV system is predicted to reduce space heating and electricity use by fans by about 30%, and in the dairy case by about 60% for space heating and 20% for electricity.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2008. 95 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1223
Keyword
Industrial energy efficiency, Industrial ventilation, Barriers, Driving forces. CFD
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-15531 (URN)978-91-7393-767-2 (ISBN)
Public defence
2008-11-21, ACAS, Hus A, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2008-11-14 Created: 2008-11-14 Last updated: 2009-05-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textLink to Ph.D. Thesis

Authority records BETA

Rohdin, PatrikMoshfegh, Bahram

Search in DiVA

By author/editor
Rohdin, PatrikMoshfegh, Bahram
By organisation
Energy SystemsThe Institute of Technology
In the same journal
Building and Environment
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 492 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf