Redox cycling induces spermptosis and necrosis in stallion spermatozoa while the hydroxyl radical (OH center dot) only induces spermptosisShow others and affiliations
2018 (English)In: Reproduction in domestic animals, ISSN 0936-6768, E-ISSN 1439-0531, Vol. 53, no 1, p. 54-67Article in journal (Refereed) Published
Abstract [en]
Oxidative stress is a major factor explaining sperm dysfunction of spermatozoa surviving freezing and thawing and is also considered a major inducer of a special form of apoptosis, visible after thawing, in cryopreserved spermatozoa. To obtain further insights into the link between oxidative stress and the induction of apoptotic changes, stallion spermatozoa were induced to oxidative stress through redox cycling after exposure to 2-methyl-1,4-naphthoquinone (menadione), or hydroxyl radical formation after FeSO4 exposure. Either exposure induced significant increases (p amp;lt; 0.05) in two markers of lipid peroxidation: 8-iso-PGF(2) and 4-hydroxynonenal (4-HNE). While both treatments induced changes indicative of spermptosis (caspase-3 activation and decreased mitochondrial membrane potential) (p amp;lt; 0.01), menadione induced sperm necrosis and a dramatic reduction in motility and thiol content in stallion spermatozoa. Thus, we provided evidence that oxidative stress underlies spermptosis, and thiol content is a key factor for stallion sperm function.
Place, publisher, year, edition, pages
WILEY , 2018. Vol. 53, no 1, p. 54-67
National Category
Physiology
Identifiers
URN: urn:nbn:se:liu:diva-144548DOI: 10.1111/rda.13052ISI: 000419940300008PubMedID: 28833663OAI: oai:DiVA.org:liu-144548DiVA, id: diva2:1178308
Note
Funding Agencies|Secretaria de Estado de Investigacion, Desarrollo e Innovacion [AGL2013-43211-R, IJCI-2014-21671]; Ministerio de Educacion Cultura y Deporte [FPU13/03991]; Ministerio de Economia y Competitividad-FEDER [AGL2013-43211-R]; Junta de Extremadura-FEDER [IB16030, GR 15029]; Swedish Research Councils [521-2011-6353]; Formas [221-2011-512]
2018-01-292018-01-292018-02-22