liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Growth Mechanism of SiC Chemical Vapor Deposition: Adsorption and Surface Reactions of Active Si Species
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-6175-1815
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
Show others and affiliations
2018 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 122, no 1, p. 648-661Article in journal (Refereed) Published
Abstract [en]

Silicon carbide is a wide bandgap semiconductor ideally suitable for high temperature and high power applications. An active SiC layer is usually fabricated using halide-assisted chemical vapor deposition (CVD). In this work, we use quantum chemical density functional theory (B3LYP and M06-2X) and transition state theory to study adsorptions of active Si species in the CVD process on both the Si face and the C face of 4H-SiC. We show that adsorptions of SiCl, SiCl2, SiHCl, SiH, and SiH2 on the Si face likely occur on a methylene site, CH2(ads), but the processes are thermodynamically less favorable than their reverse or desorptions. Nevertheless, the adsorbed products become stabilized with the help of subsequent surface reactions to form a larger cluster. These cluster formation reactions happen with rates that are fast enough to compete with the desorption processes. On the C face, the adsorptions likely occur on a surface site terminated by a dangling bond, *(ads), and produce the products which are thermodynamically stable. Lastly, we present the Gibbs free energies of adsorptions of Si atoms, SiX, SiX2, and SiHX, for X being F and Br. Adsorptions of Si atoms are shown to be the most thermodynamically favorable among all the species in the study. Among the halide-containing species, the Gibbs free energies (ARG) from smallest to largest are observed in the adsorptions of SiX, SiHX, and SiX2, for X being the halides. The results in this study suggest that the major Si contributors in the SiC CVD process are Si atoms, SiX (for X being the halide) and SiH.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2018. Vol. 122, no 1, p. 648-661
National Category
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-144885DOI: 10.1021/acs.jpcc.7b10751ISI: 000422814200069OAI: oai:DiVA.org:liu-144885DiVA: diva2:1181676
Note

Funding Agencies|Swedish Foundation for Strategic Research from Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]; Swedish Research Council (VR) [2016-05137_4]

Available from: 2018-02-09 Created: 2018-02-09 Last updated: 2018-02-09

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Sukkaew, PitsiriKalered, EmilJanzén, ErikKordina, OlleDanielsson, ÖrjanOjamäe, Lars
By organisation
Semiconductor MaterialsFaculty of Science & EngineeringChemistry
In the same journal
The Journal of Physical Chemistry C
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf