liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Remanufacturing challenges and possible lean improvements
Linköping University, Department of Management and Engineering, Manufacturing Engineering. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Management and Engineering, Manufacturing Engineering. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-2552-3636
Linköping University, Department of Management and Engineering, Logistics & Quality Management. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-4040-8302
2018 (English)In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 172, p. 3225-3236Article in journal (Refereed) Published
Abstract [en]

Remanufacturing is a viable way to prolong the useful life of an end-of-use product or its parts. Despite its economic, environmental, and social benefits, remanufacturing is associated with many challenges related to core (used product or its part) availability, timing and quality. The aim of this paper is to study how lean production could be used to tackle remanufacturing process challenges and contribute to shorter lead times. To meet this aim, we conducted a literature review and case studies of four remanufacturing companies. The case companies remanufacturing challenges were: (1) a lack of material requirements planning system, (2) poor core information, (3) a lack of core material, (4) poor spare parts information, (5) a lack of spare parts material, (6) insufficient quality management practices, (7) large inventories, (8) stochastic remanufacturing processes, (9) a lack of supply-demand balance, and (10) insufficient automation. These challenges contribute to long and variable remanufacturing process lead times. To tackle remanufacturing challenges, seven lean-based improvements with a major effect on improvements in lead time were suggested: standard operations, continuous flow, Kanban, teamwork, employee cross-training, layout for continuous flow, and supplier partnership. Providing that the suggested improvements are implemented, a possible lead time reduction of 83-99 per cent was projected. 

Place, publisher, year, edition, pages
ELSEVIER SCI LTD , 2018. Vol. 172, p. 3225-3236
Keywords [en]
Remanufacturing; Circular economy; Lean production; Lead time
National Category
Production Engineering, Human Work Science and Ergonomics
Identifiers
URN: urn:nbn:se:liu:diva-144880DOI: 10.1016/j.jclepro.2017.11.023ISI: 000423002500020OAI: oai:DiVA.org:liu-144880DiVA, id: diva2:1181684
Note

Funding Agencies|Swedish Governmental Agency for Innovation Systems [2013-03333]

Available from: 2018-02-09 Created: 2018-02-09 Last updated: 2018-05-17
In thesis
1. Lean Remanufacturing: Reducing Process Lead Time
Open this publication in new window or tab >>Lean Remanufacturing: Reducing Process Lead Time
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Remanufacturing is a product recovery option in which used products are brought back into useful life. While the remanufacturing industry stretches from heavy machinery to automotive parts, furniture, and IT sectors, it faces challenges. A majority of these challenges originate from the remanufacturing characteristics of having little control over the core (the used product or its part), high product variation, low product volumes, and a high proportion of manual work, when compared to manufacturing. Some remanufacturing challenges appear to be process challenges that prolong process lead time, making remanufacturing process inefficient.

Lean is an improvement strategy with roots in the manufacturing industry. Lean helps to increase customer satisfaction, reduce costs, and improve company’s performance in delivery, quality, inventory, morale, safety, and other areas. Lean encompasses principles, tools and practices to deal with e.g. inefficient processes and long process lead times. Therefore, in this thesis lean has been selected as an improvement strategy to deal with long remanufacturing process lead times.

The objective of this thesis is to expand knowledge on how lean can reduce remanufacturing process lead time. This objective is approached through literature studies and a case study conducted at four remanufacturing companies. There are five challenges that contribute to long process lead time: unpredictable core quality, quantity, and timing; weak collaboration, information exchange, and miscommunication; high inventory levels; unknown number of required operations in process and process sequence; and insufficient employee skills for process and product upgrade. When analysing the case companies’ process lead times it was found that there is a need to reduce waiting times, which account for 95 to 99 per cent of process lead times at three of the four companies.

To improve remanufacturing process efficiency and reduce remanufacturing process lead time six lean practices are suggested: product families; kanban; layout for continuous flow; cross functional teams; standard operating procedures; and supplier partnerships. The suggested lean practices have a key focus on reducing waiting time since it prolongs the process lead time. This thesis contributes to lean remanufacturing research with the case study findings on lean practices to reduce remanufacturing process lead time and increase process efficiency.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. p. 70
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1938
Keywords
Circular Economy, Lean Production, Toyota Production System, Value Stream Mapping, Remanufacturing Process Challenges and Improvements, Process Efficiency
National Category
Production Engineering, Human Work Science and Ergonomics Reliability and Maintenance
Identifiers
urn:nbn:se:liu:diva-147875 (URN)10.3384/diss.diva-147875 (DOI)9789176853030 (ISBN)
Public defence
2018-06-14, ACAS, A building, Campus Valla, Linköping, 09:15 (Swedish)
Opponent
Supervisors
Available from: 2018-05-17 Created: 2018-05-17 Last updated: 2019-09-30Bibliographically approved

Open Access in DiVA

fulltext(569 kB)3566 downloads
File information
File name FULLTEXT01.pdfFile size 569 kBChecksum SHA-512
09bdd0b9db7ba41dd2c7e9d700ebd168dd4dbd005aa18fac4cc9d9f9079758e4dd154cbaafffe267f56807da9c722866060897c052753cb88c42b0297743e71a
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Kurilova, JelenaSundin, ErikPoksinska, Bozena
By organisation
Manufacturing EngineeringFaculty of Science & EngineeringLogistics & Quality Management
In the same journal
Journal of Cleaner Production
Production Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar
Total: 3590 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1035 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf