liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Organic solar cells based on non-fullerene acceptors
Chinese Acad Sci, Peoples R China.
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
Cavendish Lab, England.
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-2582-1740
2018 (English)In: Nature Materials, ISSN 1476-1122, E-ISSN 1476-4660, Vol. 17, no 2, p. 119-128Article, review/survey (Refereed) Published
Abstract [en]

Organic solar cells (OSCs) have been dominated by donor: acceptor blends based on fullerene acceptors for over two decades. This situation has changed recently, with non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-based OSCs. NF acceptors show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities. The coexistence of low voltage losses and high current generation indicates that new regimes of device physics and photophysics are reached in these systems. This Review highlights these opportunities made possible by NF acceptors, and also discuss the challenges facing the development of NF OSCs for practical applications.

Place, publisher, year, edition, pages
Nature Publishing Group, 2018. Vol. 17, no 2, p. 119-128
National Category
Other Engineering and Technologies not elsewhere specified
Identifiers
URN: urn:nbn:se:liu:diva-144871DOI: 10.1038/NMAT5063ISI: 000423153800009PubMedID: 29358765OAI: oai:DiVA.org:liu-144871DiVA, id: diva2:1181736
Note

Funding Agencies|National Natural Science Foundation of China [91633301, 91333204, 51673201, 21325419, 51711530159]; Chinese Academy of Sciences [XDB12030200]; Swedish Research Council VR [2017-00744, 2016-06146]; Swedish Energy Agency Energimyndigheten [2016-010174]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [SFO-Mat-LiU #2009-00971]; Engineering and Physical Sciences Research Council in the UK; Knut and Alice Wallenberg foundation (KAW) through a Wallenberg Scholar grant

Available from: 2018-02-09 Created: 2018-02-09 Last updated: 2018-03-16

Open Access in DiVA

The full text will be freely available from 2018-07-23 13:54
Available from 2018-07-23 13:54

Other links

Publisher's full textPubMed

Authority records BETA

Inganäs, OlleGao, Feng

Search in DiVA

By author/editor
Inganäs, OlleGao, Feng
By organisation
Biomolecular and Organic ElectronicsFaculty of Science & Engineering
In the same journal
Nature Materials
Other Engineering and Technologies not elsewhere specified

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 226 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf