liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Elastic properties and plastic deformation of TiC- and VC-based alloys
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. Ruhr Univ Bochum, Germany.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-2837-3656
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA; Univ Illinois, IL 61801 USA.
Show others and affiliations
2018 (English)In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 144, p. 376-385Article in journal (Refereed) Published
Abstract [en]

Transition-metal (TM) carbides are an important class of hard, protective coating materials; however, their brittleness often limits potential applications. We use density functional theory to investigate the possibility of improving ductility by forming pseudobinary cubic (MMC)-M-1-C-2 alloys, for which M-1 = Ti or V and M-2 = W or Mo. The alloying elements are chosen based on previous results showing improved ductility of the corresponding pseudobinary nitride alloys with respect to their parent compounds. While commonly-used empirical criteria do not indicate enhanced ductility in the carbide alloys, calculated stress/strain curves along known slip systems, supported by electronic structure analyses, indicate ductile behavior for VMoC. As VMoC layers are sheared along the 1 (1) over bar0 direction on {111} planes, the stress initially increases linearly up to a yield point where the accumulated stress is partially dissipated. With further increase in strain, the stress increases again until fracture occurs. A similar mechanical behavior is observed for the corresponding TM nitride VMoN, known to be a ductile ceramic material [1]. Thus, our results show that VMoC is a TM carbide alloy which may be both hard and ductile, i.e. tough. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE LTD , 2018. Vol. 144, p. 376-385
Keyword [en]
Carbides; Density functional theory; Elastic properties; Ductility; Toughness
National Category
Other Materials Engineering
Identifiers
URN: urn:nbn:se:liu:diva-145470DOI: 10.1016/j.actamat.2017.10.047ISI: 000424067100035OAI: oai:DiVA.org:liu-145470DiVA, id: diva2:1188371
Note

Funding Agencies|Swedish Research Council (VR) Linkoping Linnaeus Initiative LiLi-NFM [2008-6572]; Swedish Government Strategic Research Area Grant in Materials Science on Advanced Functional Materials (Grant SFO-Mat-LiU) [2009 00971]; Olle Engkvist Foundation

Available from: 2018-03-07 Created: 2018-03-07 Last updated: 2018-03-07

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Edström, DanielSangiovanni, DavideHultman, LarsPetrov, IvanGreene, Joseph EChirita, Valeriu
By organisation
Thin Film PhysicsFaculty of Science & EngineeringTheoretical Physics
In the same journal
Acta Materialia
Other Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf