liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Synthesis of Queue and Priority Assignment for Asynchronous Traffic Shaping in Switched Ethernet
Univ Duisburg Essen, Germany.
Linköping University, Department of Computer and Information Science, Software and Systems. Linköping University, Faculty of Science & Engineering. Gen Motors RandD, MI USA.
2017 (English)In: 2017 IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS), IEEE , 2017, p. 178-187Conference paper, Published paper (Refereed)
Abstract [en]

Real-time switched Ethernet communication is of increasing importance in many cyber-physical and embedded systems application areas such as automotive electronics, avionics, and industrial control. The IEEE 802.1 Time-Sensitive Networking (TSN) task group develops standards for real-time Ethernet, for example a time-triggered traffic class (IEEE 802.1Qbv-2015). New application areas, such as active safety and autonomous driving using radar, lidar, and camera sensors, which do not fall into the strictly periodic, time-triggered communication model, require a flexible traffic class that can accommodate various communication models while still providing hard real-time guarantees. In our previous work, we developed such a traffic class, Urgency-Based Scheduler (UBS), and its worst-case latency analysis. UBS is currently under standardization (P802.1Qcr) in the TSN task group. In this paper, we introduce and solve the UBS synthesis problem of assigning hard real-time data flows to queues and priority levels to queues, the main parameters that determine communication latencies. The synthesis problem is particularly challenging due to the flexibility offered by UBS to aggregate flows and assign individual priority levels per network hop. We present an SMT approach, a cluster-based heuristic, and an extensive experimental evaluation.

Place, publisher, year, edition, pages
IEEE , 2017. p. 178-187
Series
Real-Time Systems Symposium-Proceedings, ISSN 1052-8725
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:liu:diva-145818DOI: 10.1109/RTSS.2017.00024ISI: 000426466700017ISBN: 978-1-5386-1414-3 OAI: oai:DiVA.org:liu-145818DiVA, id: diva2:1192167
Conference
38th IEEE Real-Time Systems Symposium (RTSS)
Available from: 2018-03-21 Created: 2018-03-21 Last updated: 2018-03-21

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Samii, Soheil
By organisation
Software and SystemsFaculty of Science & Engineering
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf