This paper presents a new method to compute upper and lower bounds of any voltage or current of an arbitrary linear electric circuit model with uncertain parameters. The bounds are in the frequency domain, and when compared to a previously proposed method, this novel approach provides a higher level of guarantee. The reason is that the bounds are not only computed for a set of fixed frequencies but also computed to a set of intervals of frequencies. The details of the proposed approach, especially the equivalent uncertain element models, are given. Additionally, tests are performed on problems with low and high number of uncertain parameters. Contrary to the classical method of Monte Carlo, the results are not based on a random choice of parameters and do not depend on the number of iterations. It is shown on an example that the classical method of Monte Carlo needs a high number of iterations to reach results in agreement with the proposed method. Then, it leads to higher computation times of several orders of magnitude.
Funding Agencies|LIA Maxwell French-Brazilian collaboration; Swedish-Brazilian Research and Inovation Center (CISB)