liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Non-canonical heterogeneous cellular distribution and co-localization of CaMKIIα and CaMKIIβ in the spinal superficial dorsal horn.
Linköping University, Department of Clinical and Experimental Medicine, Divison of Neurobiology. Linköping University, Faculty of Medicine and Health Sciences.ORCID iD: 0000-0003-3584-7829
2018 (English)In: Brain Structure and Function, ISSN 1863-2653, E-ISSN 1863-2661, Vol. 223, no 3, p. 1437-1457Article in journal (Refereed) Published
Abstract [en]

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a key enzyme in long-term plasticity in many neurons, including in the nociceptive circuitry of the spinal dorsal horn. However, although the role of CaMKII heterooligomers in neuronal plasticity is isoform-dependent, the distribution and co-localization of CaMKII isoforms in the dorsal horn have not been comprehensively investigated. Here, quantitative immunofluorescence analysis was used to examine the distribution of the two major neuronal CaMKII isoforms, α and β, in laminae I–III of the rat dorsal horn, with reference to inhibitory interneurons and neuronal populations defined by expression of parvalbumin, calretinin, and calbindin D28k. Unexpectedly, all or nearly all inhibitory and excitatory neurons showed both CaMKIIα and CaMKIIβ immunoreactivity, although at highly variable levels. Lamina III neurons showed less CaMKIIα immunoreactivity than laminae I–II neurons. Whereas CaMKIIα immunoreactivity was found at nearly similar levels in inhibitory and excitatory neurons, CaMKIIβ generally showed considerably lower immunoreactivity in inhibitory neurons. Distinct populations of inhibitory calretinin neurons and excitatory parvalbumin neurons exhibited high CaMKIIα-to-CaMKIIβ immunoreactivity ratios. CaMKIIα and CaMKIIβ immunoreactivity showed positive correlation at GluA2+ puncta in pepsin-treated tissue. These results suggest that, unlike the forebrain, the dorsal horn is characterized by similar expression of CaMKIIα in excitatory and inhibitory neurons, whereas CaMKIIβ is less expressed in inhibitory neurons. Moreover, CaMKII isoform expression varies considerably within and between neuronal populations defined by laminar location, calcium-binding protein expression, and transmitter phenotype, suggesting differences in CaMKII function both between and within neuronal populations in the superficial dorsal horn.

Place, publisher, year, edition, pages
2018. Vol. 223, no 3, p. 1437-1457
Keyword [en]
Central sensitization, GABA, Pain, Pax2, Spinal cord
National Category
Neurosciences
Identifiers
URN: urn:nbn:se:liu:diva-146255DOI: 10.1007/s00429-017-1566-0PubMedID: 29151114OAI: oai:DiVA.org:liu-146255DiVA, id: diva2:1195366
Available from: 2018-04-05 Created: 2018-04-05 Last updated: 2018-04-05

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Larsson, Max

Search in DiVA

By author/editor
Larsson, Max
By organisation
Divison of NeurobiologyFaculty of Medicine and Health Sciences
In the same journal
Brain Structure and Function
Neurosciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 50 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf