liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sharp pointwise gradient estimates for Riesz potentialswith a bounded density
Linköping University, Department of Mathematics, Mathematics and Applied Mathematics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-8422-6140
2018 (English)In: Analysis and Mathematical Physics, ISSN 1664-2368, E-ISSN 1664-235X, Vol. 8, no 4, p. 711-730Article in journal (Refereed) Published
Abstract [en]

We establish sharp inequalities for the Riesz potential and its gradient inRnand indicate their usefulness for potential analysis, moment theory and other applications.

Place, publisher, year, edition, pages
Springer Berlin/Heidelberg, 2018. Vol. 8, no 4, p. 711-730
Keywords [en]
Riesz potential, Exponential transform, L-problem of moments, Subharmonic functions
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:liu:diva-147630DOI: 10.1007/s13324-018-0230-zISI: 000451394300014OAI: oai:DiVA.org:liu-147630DiVA, id: diva2:1202686
Available from: 2018-04-29 Created: 2018-04-29 Last updated: 2018-12-20Bibliographically approved

Open Access in DiVA

fulltext(506 kB)65 downloads
File information
File name FULLTEXT01.pdfFile size 506 kBChecksum SHA-512
2ae6c452d343629ac5faf4325b4dcf7a405ad773d4383303a13d62961edb2a42e69cdb42882963166649b1887e4d734c6e37909d1bff8f6f7a829ead3bb66f52
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Tkachev, Vladimir

Search in DiVA

By author/editor
Tkachev, Vladimir
By organisation
Mathematics and Applied MathematicsFaculty of Science & Engineering
In the same journal
Analysis and Mathematical Physics
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 65 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 217 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf