liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Prediction of crystallographic cracking planes in single-crystal nickel-base superalloys
Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-1688-9732
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
Siemens Ind Turbomachinery AB, Sweden.
Siemens Ind Turbomachinery AB, Sweden.
Show others and affiliations
2018 (English)In: Engineering Fracture Mechanics, ISSN 0013-7944, E-ISSN 1873-7315, Vol. 196, p. 206-223Article in journal (Refereed) Published
Abstract [en]

The inherent anisotropy of single-crystal nickel-base superalloys brings many difficulties in terms of modelling, evaluation and prediction of fatigue crack growth. Two models to predict on which crystallographic plane cracking will occur is presented. The models are based on anisotropic stress intensity factors resolved on crystallographic slip planes calculated in a three-dimensional finite-element context. The developed models have been compared to experiments on two different test specimen geometries. The results show that a correct prediction of the crystallographic cracking plane can be achieved. This knowledge is of great interest for the industry and academia to better understand and predict crack growth in single-crystal materials.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 196, p. 206-223
Keywords [en]
Single-crystal nickel-base superalloys; Anisotropy; Fracture mechanics; Stress intensity factor; Crystallographic cracking
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:liu:diva-148380DOI: 10.1016/j.engfracmech.2018.04.047ISI: 000432704300014OAI: oai:DiVA.org:liu-148380DiVA, id: diva2:1219026
Note

Funding Agencies|Swedish Energy Agency; Siemens Industrial Turbomachinery AB through the Research Consortium of Materials Technology for Thermal Energy Processes [KME-702]

Available from: 2018-06-15 Created: 2018-06-15 Last updated: 2019-11-19
In thesis
1. Modelling of Crack Growth in Single-Crystal Nickel-Base Superalloys
Open this publication in new window or tab >>Modelling of Crack Growth in Single-Crystal Nickel-Base Superalloys
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This dissertation was produced at the Division of Solid Mechanics at Linköping University and is part of a research project, which comprises modelling, microstructure investigations and material testing of cast nickel-base superalloys. The main objective of this work was to deepen the understanding of the fracture behaviour of single-crystal nickel-base superalloys and to develop a model to predict the fatigue crack growth behaviour. Frequently, crack growth in these materials has been observed to follow one of two distinct cracking modes; Mode I like cracking perpendicular to the loading direction or crystallographic crack growth on the octahedral {111}-planes, where the latter is associated with an increased fatigue crack growth rate. Thus, it is of major importance to account for this behaviour in component life prediction. Consequently, a model for the prediction of the transition of cracking modes and the correct active crystallographic plane, i.e. the crack path, and the crystallographic crack growth rate has been developed. This model is based on the evaluation of appropriate crack driving forces using three-dimensional finite-element simulations. A special focus was given towards the influence of the crystallographic orientation on the fracture behaviour. Further, a model to incorporate residual stresses in the crack growth modelling is presented. All modelling work is calibrated and validated by experiments on different specimen geometries with different crystallographic orientations. This dissertation consists of two parts, where Part I gives an introduction and background to the field of research, while Part II consists of six appended papers.

Abstract [de]

Die vorliegende Dissertation wurde in der Abteilung für Festigkeitslehre an der Universität von Linköping erstellt und ist Teil eines Forschungsprojektes, welches Modellierung, Mikrostrukturuntersuchungen und Materialtests von gegossenen nickelbasierten Superlegierungen umfasst.

Das Hauptziel dieser Arbeit war es, das Verständnis des Bruchverhaltens von einkristallinen Superlegierungen auf Nickelbasis zu vertiefen und ein Modell zur Vorhersage des Wachstumsverhaltens von Ermüdungsrissen zu entwickeln. Es wurde beobachtet, dass das Risswachstum in diesen Materialien einem von zwei unterschiedlichen Rissmodi folgt; Modus I Rissfortschritt senkrecht zur Belastungsrichtung oder kristallographisches Risswachstum auf den oktaedrischen f111g-Ebenen, wobei letzteres mit einer erhöhten Ermüdungsrisswachstumsrate verbunden ist. Somit ist es von grosser Bedeutung dieses Verhalten in der Lebensdauervorhersage einer Komponente zu berücksichtigen. Demzufolge wurde ein Modell für die Vorhersage des Übergangs zwischen den Rissmodi und der korrekten aktiven kristallographischen Ebene, d.h. des Risspfades, sowie der kristallographischen Risswachstumsrate erarbeitet. Dieses Modell basiert auf geeigneten Rissantriebskräften, welche mit Hilfe dreidimensionaler Finite-Elemente-Simulationen berechnet werden. Im Fokus stand insbesondere der Einuss der kristallographischen Orientierung auf das Bruchverhalten. Ausserdem wird ein Modell zur Berücksichtigung von Restspannungen in der Risswachstumsmodellierung präsentiert. Alle Modellierungsarbeiten wurden durch Experimente an verschiedenen Probengeometrien mit unterschiedlichen kristallographischen Orientierungen kalibriert und validiert.

Diese Dissertation besteht aus zwei Teilen, wobei Teil I aus einer Einführung und einem Hintergrund in das Forschungsgebiet und Teil II aus sechs beigefügten Forschungsartikeln besteht.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. p. 55
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2023
National Category
Applied Mechanics
Identifiers
urn:nbn:se:liu:diva-160477 (URN)10.3384/diss.diva-160477 (DOI)9789179299835 (ISBN)
Public defence
2019-12-13, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2019-09-24 Created: 2019-09-23 Last updated: 2019-11-26Bibliographically approved

Open Access in DiVA

The full text will be freely available from 2020-05-05 15:21
Available from 2020-05-05 15:21

Other links

Publisher's full text

Authority records BETA

Busse, Christian

Search in DiVA

By author/editor
Busse, ChristianPalmert, FransSimonsson, KjellLeidermark, Daniel
By organisation
Solid MechanicsFaculty of Science & EngineeringEngineering Materials
In the same journal
Engineering Fracture Mechanics
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 220 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf