liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
AN OPTIMIZATION FRAMEWORK FOR ADDITIVE MANUFACTURING GIVEN TOPOLOGY OPTIMIZATION RESULTS
Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
2018 (English)In: Tools and Methods of Competitive Engineering: Implementation, application and utilization of smart systems, 2018Conference paper, Published paper (Other academic)
Abstract [en]

In this paper, a method of designing for Additive Manufacturing (AM) is proposed, implemented, and evaluated in a case study. In the proposed method, Topological Optimization is combined with a Multidisciplinary Design Optimization (MDO) framework that handles multi-objective optimization. Both the weight and amount of support material needed during manufacturing are minimized. In the proposed method, the topological optimized structure is remodelled into a parametric CAD model. The CAD model is then combined with an FE-model that calculates the stresses in the material and a model that calculates the amount of support structure needed. Two different optimization formulations are evaluated and compared in the case study.

In the case study an upright of a Formula Student racing car is designed. Several design evaluations are performed resulting in a set of Pareto optimal designs that could be used for decision-making where the trade-off between the two objectives is considered. It is concluded that the proposed method fulfils its purpose by being able to identify designs that would be difficult to come up with manually. Several suggestions for further studies in order to improve the method are also discussed.

Place, publisher, year, edition, pages
2018.
Keywords [en]
Additive Manufacturing, Design for Additive Manufacturing, Topology Optimization, Design Optimization, Multidisciplinary Design Op
National Category
Other Mechanical Engineering
Identifiers
URN: urn:nbn:se:liu:diva-150367OAI: oai:DiVA.org:liu-150367DiVA, id: diva2:1240128
Conference
Twelfth International Symposium on Tools and Methods of Competitive Engineering (TMCE 2018), Las Palmas de Gran Canaria, Spain, 7-11 May 2018
Available from: 2018-08-20 Created: 2018-08-20 Last updated: 2018-09-18

Open Access in DiVA

No full text in DiVA

Authority records BETA

Persson, JohanÖlvander, Johan

Search in DiVA

By author/editor
Wiberg, AntonPersson, JohanÖlvander, Johan
By organisation
Machine DesignFaculty of Science & Engineering
Other Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 144 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf