Automatic Viewpoint Selection for Exploration of Time-dependent Cerebral Aneurysm DataShow others and affiliations
2017 (English)In: Bildverarbeitung für die Medizin 2017: Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. März 2017 in Heidelberg / [ed] Klaus Hermann Maier-Hein, Thomas M. Deserno, Heinz Handels, Thomas Tolxdorff Herausgeber, Springer Berlin/Heidelberg, 2017, p. 352-357Conference paper, Published paper (Refereed)
Abstract [en]
This paper presents an automatic selection of viewpoints, forming a camera path, to support the exploration of cerebral aneurysms. Aneurysms bear the risk of rupture with fatal consequences for the patient. For the rupture risk evaluation, a combined investigation of morphological and hemodynamic data is necessary. However, the extensive nature of the time-dependent data complicates the analysis. During exploration, domain experts have to manually determine appropriate views, which can be a tedious and time-consuming process. Our method determines optimal viewpoints automatically based on input data such as wall thickness or pressure. The viewpoint selection is modeled as an optimization problem. Our technique is applied to five data sets and we evaluate the results with two domain experts by conducting informal interviews.
Place, publisher, year, edition, pages
Springer Berlin/Heidelberg, 2017. p. 352-357
Series
Informatik aktuell, ISSN 1431-472X
Keywords [en]
BVM, d
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:liu:diva-151739DOI: 10.1007/978-3-662-54345-0_79ISBN: 9783662543443 (print)ISBN: 9783662543450 (electronic)OAI: oai:DiVA.org:liu-151739DiVA, id: diva2:1253134
Conference
Bildverarbeitung für die Medizin (BVM, Workshops vom 12. bis 14. März 2017 in Heidelberg, Germany
Note
BVM Preis Beste Wissenschaftliche Arbeit
2018-10-032018-10-032018-10-12Bibliographically approved