liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analytic content and the isoperimetric inequality in higher dimensions
Univ Coll Dublin, Ireland.
Univ Coll Dublin, Ireland.
Linköping University, Department of Mathematics, Mathematics and Applied Mathematics. Linköping University, Faculty of Science & Engineering.
2018 (English)In: Journal of Functional Analysis, ISSN 0022-1236, E-ISSN 1096-0783, Vol. 275, no 9, p. 2284-2298Article in journal (Refereed) Published
Abstract [en]

This paper establishes a conjecture of Gustafsson and Khavinson, which relates the analytic content of a smoothly bounded domain in R-N to the classical isoperimetric inequality. The proof is based on a novel combination of partial balayage with optimal transport theory. (C) 2018 Elsevier Inc. All rights reserved.

Place, publisher, year, edition, pages
ACADEMIC PRESS INC ELSEVIER SCIENCE , 2018. Vol. 275, no 9, p. 2284-2298
Keywords [en]
Analytic content; Harmonic vector fields; Isoperimetric inequality; Optimal transport
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:liu:diva-151628DOI: 10.1016/j.jfa.2018.08.004ISI: 000444222300002OAI: oai:DiVA.org:liu-151628DiVA, id: diva2:1254395
Available from: 2018-10-09 Created: 2018-10-09 Last updated: 2018-10-09

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Sjödin, Tomas
By organisation
Mathematics and Applied MathematicsFaculty of Science & Engineering
In the same journal
Journal of Functional Analysis
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf