liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sulfur Cycling in the Terrestrial Subsurface: Commensal Interactions, Spatial Scales, and Microbial Heterogeneity
Department of Botany and Microbiology, 770 Van Vleet Oval, University of Oklahoma, Norman, OK 73019-0245, USA.
Department of Oceanography, Texas A&M University, College Station, TX 77843, USA.
Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA.
Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA.ORCID iD: 0000-0001-7184-1593
Show others and affiliations
1998 (English)In: Microbial Ecology, ISSN 0095-3628, E-ISSN 1432-184X, Vol. 36, no 2, p. 141-151Article in journal (Refereed) Published
Abstract [en]

Microbiological, geochemical, and isotopic analyses of sediment and water samples from the unconsolidated Yegua formation in east-central Texas were used to assess microbial processes in the terrestrial subsurface. Previous geochemical studies suggested that sulfide oxidation at shallow depths may provide sulfate for sulfate-reducing bacteria (SRB) in deeper aquifer formations. The present study further examines this possibility, and provides a more detailed evaluation of the relationship between microbial activity, lithology, and the geochemical environment on meter-to-millimeter scales. Sediment of varied lithology (sands, silts, clays, lignite) was collected from two boreholes, to depths of 30 m. Our findings suggest that pyrite oxidation strongly influences the geochemical environment in shallow sediments ( 5 m), and produces acidic waters (pH 3.8) that are rich in sulfate (28 mM) and ferrous iron (0.3 mM). Sulfur and iron-oxidizing bacteria are readily detected in shallow sediments; they likely play an indirect role in pyrite oxidation. In consistent fashion, there is a relative paucity of pyrite in shallow sediments and a low 34S/32S-sulfate ratio (0.2ᅵ) (reflecting contributions from 34S-depleted sulfides) in shallow regions. Pyrite oxidation likely provides a sulfate source for both oxic and anoxic aquifers in the region. A variety of assays and direct-imaging techniques of 35S-sulfide production in sediment cores indicates that sulfate reduction occurs in both the oxidizing and reducing portions of the sediment profile, with a high degree of spatial variability. Narrow zones of activity were detected in sands that were juxtaposed to clay or lignite-rich sediments. The fermentation of organic matter in the lignite-rich laminae provides small molecular weight organic acids to support sulfate reduction in neighboring sands. Consequently, sulfur cycling in shallow sediments, and sulfate transport represent important mechanisms for commensal interaction among subsurface microorganisms by providing electron donors for chemoautotrophic bacteria and electron acceptors for SRB. The activity of SRB is linked to the availability of suitable electron donors from spatially distinct zones.

Place, publisher, year, edition, pages
Springer, 1998. Vol. 36, no 2, p. 141-151
National Category
Geochemistry Microbiology Geosciences, Multidisciplinary
Identifiers
URN: urn:nbn:se:liu:diva-151926DOI: 10.1007/s002489900101OAI: oai:DiVA.org:liu-151926DiVA, id: diva2:1254798
Available from: 2018-10-10 Created: 2018-10-10 Last updated: 2021-12-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Routh, Joyanto

Search in DiVA

By author/editor
Routh, Joyanto
In the same journal
Microbial Ecology
GeochemistryMicrobiologyGeosciences, Multidisciplinary

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 33 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf