liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
HUMAN AND MACHINE TYPE COMMUNICATIONS CAN COEXIST IN UPLINK MASSIVE MIMO SYSTEMS
Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-5954-434X
Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-7599-4367
2018 (English)In: 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), IEEE , 2018, p. 6613-6617Conference paper, Published paper (Refereed)
Abstract [en]

Future cellular networks are expected to support new communication paradigms such as machine-type communication (MTC) services along with human-type communication (HTC) services. This requires base stations to serve a large number of devices in relatively short channel coherence intervals which renders allocation of orthogonal pilot sequence per-device approaches impractical. Furthermore. the stringent power constraints, place-and-play type connectivity and various data rate requirements of MTC devices make it impossible for the traditional cellular architecture to accommodate MTC and HTC services together. Massive multiple-input-multiple-output (MaMIMO) technology has the potential to allow the coexistence of HTC and MTC services, thanks to its inherent spatial multiplexing properties and low transmission power requirements. In this work, we investigate the performance of a single cell under a shared physical channel assumption for MTC and HTC services and propose a novel scheme for sharing the time-frequency resources. The analysis reveals that MaMIMO can significantly enhance the performance of such a setup and allow the inclusion of MTC services into the cellular networks without requiring additional resources.

Place, publisher, year, edition, pages
IEEE , 2018. p. 6613-6617
Keywords [en]
MIMO; Machine Type Communication
National Category
Communication Systems
Identifiers
URN: urn:nbn:se:liu:diva-152422DOI: 10.1109/ICASSP.2018.8461726ISI: 000446384606154ISBN: 978-1-5386-4658-8 (electronic)ISBN: 978-1-5386-4659-5 (print)OAI: oai:DiVA.org:liu-152422DiVA, id: diva2:1259575
Conference
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Note

Funding Agencies|ELLIIT; Swedish Research Council (VR) [2015-05573]; Swedish Foundation for Strategic Research

Available from: 2018-10-30 Created: 2018-10-30 Last updated: 2019-06-28

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Senel, KamilBjörnson, EmilLarsson, Erik G
By organisation
Communication SystemsFaculty of Science & Engineering
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf