liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Parameter Evaluation of Printed Primary Zn/MnO2-Batteries with Nonwoven and Hydrogel Separator
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering. Innovative Applications of The Printing Technologies, Stuttgart Media University, Stuttgart, Germany.
Innovative Applications of The Printing Technologies, Stuttgart Media University, Stuttgart, Germany.
Innovative Applications of The Printing Technologies, Stuttgart Media University, Stuttgart, Germany.
Innovative Applications of The Printing Technologies, Stuttgart Media University, Stuttgart, Germany.
Show others and affiliations
2018 (English)In: Flexible and Printed Electronics, E-ISSN 2058-8585, Vol. 3, no 4, article id 045004Article in journal (Refereed) Published
Abstract [en]

Potentially important parameters of printed flexible batteries based on the primary zinc -manganese dioxide (Zn/MnO2) system were investigated using a fractional factorial design of experiments (DOE). A novel hydrogel electrolyte made of lactic acid and cornstarch proved functionality. Using this kind of hydrogel, it is important to impede unwanted sidereactions with the zinc electrode. Accurate control of the electrode mass is absolutely necessary, since the mass of deposited MnO2 and the mass ratio of MnO2:Zn determines the capacity of the cells. With optimised parameter settings the capacity of printed cells was increased to over 100 mAh, which is equivalent to an area- related specific capacity of about 7.3 mAh/cm2. This is within the range of the commercially available button cells, which were supplied with the same discharge conditions between 125 and 155 mAh. By means of electrochemical impedance spectroscopy (EIS) the cells were examined immediately after assembly. Within three hours the cell could be identified as in principle working or defect. As such, precious measurement time can be saved by selecting promising cells prior to characterisation.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2018. Vol. 3, no 4, article id 045004
Keywords [en]
printed batteries, primary batteries, electrochemical impedance spectroscopy, gel polymer electrolyte, zinc-manganese dioxide
National Category
Other Physics Topics
Identifiers
URN: urn:nbn:se:liu:diva-152427DOI: 10.1088/2058-8585/aae6b3OAI: oai:DiVA.org:liu-152427DiVA, id: diva2:1259599
Available from: 2018-10-30 Created: 2018-10-30 Last updated: 2022-10-06Bibliographically approved
In thesis
1. Screen Printing Technology for Energy Devices
Open this publication in new window or tab >>Screen Printing Technology for Energy Devices
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The technical application of screen and stencil printing has been state of the art for decades. As part of the subtractive production process of printed circuit boards, for instance, screen and stencil printing play an important role. With the end of the 20th century, another field has opened up with organic electronics. Since then, more and more functional layers have been produced using printing methods. Printed electronics devices offer properties that give almost every freedom to the creativity of product development. Flexibility, low weight, use of non-toxic materials, simple disposal and an enormous number of units due to the production process are some of the prominent keywords associated with this field.

Screen printing is a widely used process in printed electronics, as this process is very flexible with regard to the materials that can be used. In addition, a minimum resolution of approximately 30 µm is sufficiently high. The ink film thickness, which can be controlled over a wide range, is an extremely important advantage of the process. Depending on the viscosity, layer thicknesses of several hundred nanometres up to several hundred micrometres can be realised.

The conversion and storage of energy became an increasingly important topic in recent years. Since regenerative energy sources, such as photovoltaics or wind energy, often supply energy intermittently, appropriate storage systems must be available. This applies to large installations for the power supply of society, but also in the context of autarkic sensors, such as those used in the Internet of Things or domestic/industrial automation. A combination of micro-energy converters and energy storage devices is an adequate concept for providing energy for such applications.

In this thesis the above mentioned keywords are addressed and the feasibility of printed thermoelectric energy converters and supercapacitors as energy storage devices are investigated. The efficiency of thermoelectric generators (TEG) is low, but in industrial environments, for example, a large amount of unused low temperature heat energy can be found. If the production costs of TEGs are low, conversion of this unused heat energy can contribute to increasing system efficiency.

Additionally, printing of supercapacitor energy storage devices increases the usability of the TEG. It is appropriate to use both components as complementary parts in an energy system.

Abstract [sv]

Den tekniska tillämpningen av skärm- och stencilutskrift har varit toppmoderna i årtionden. Som en del av den subtraktiva produktionsprocessen av tryckta kretskort spelar exempelvis skärm- och stencilutskrift en viktig roll. I slutet av 1900-talet har ett annat fält öppnat med organisk elektronik. Sedan dess har allt fler funktionella lager producerats med hjälp av tryckmetoder. Tryckta elektronikanordningar erbjuder egenskaper som ger nästan all frihet till kreativiteten i produktutvecklingen. Flexibilitet, låg vikt, användning av giftfria material, enkelt bortskaffande och ett enormt antal enheter på grund av produktionsprocessen är några av de framträdande nyckelord som hör till detta område.

Skärmtryck är en allmänt använd process i tryckt elektronik, eftersom processen är mycket flexibel med avseende på material som kan användas. Dessutom är en minsta upplösning på cirka 30 µm tillräckligt bra. Bläckfilmens tjocklek, som kan styras över ett brett område, är en extremt viktig fördel med processen. Beroende på viskositeten kan skikttjockleken på flera hundra nanometer upp till flera hundra mikrometer realiseras.

Energikonvertering och lagring har blivit ett allt viktigare ämne de senaste åren. Eftersom regenerativa energikällor, såsom fotovoltaik eller vindkraft, ofta levererar energi intermittent, måste lämpliga lagringssystem vara tillgängliga. Detta gäller stora installationer för samhällets strömförsörjning, men också inom ramen för autarkiska sensorer, som de som används i saker av saker eller inhemsk / industriell automation. En kombination av mikroenergiomvandlare och energilagringsenheter är ett lämpligt koncept för att tillhandahålla energi för sådana applikationer.

I denna avhandling behandlas ovan nämnda nyckelord. Genomförbarhet av tryckta termoelektriska energiomvandlare och superkapacitorer som energilagringsenheter undersöks. Effektiviteten hos termoelektriska generatorer (TEG) är låg, men i industriella miljöer kan exempelvis en stor mängd oanvänd låg temperatur värmeenergi hittas. Om produktionskostnaderna för TEG är låga kan konvertering av denna oanvända värmeenergi bidra till ökad systemeffektivitet. Dessutom ökar utskrift av superkapacitorer användbarheten hos TEG. Det är lämpligt att använda båda komponenterna.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. p. 106
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1942
Keywords
screen printing, printed electronics, energy converters, energy storage
National Category
Other Physics Topics
Identifiers
urn:nbn:se:liu:diva-152425 (URN)10.3384/diss.diva-152425 (DOI)9789176852743 (ISBN)
Public defence
2019-03-15, Önnesjösalen, K3, Kåkenhus, Campus Norrköping, Norrköping, 10:00 (English)
Opponent
Supervisors
Available from: 2018-10-30 Created: 2018-10-30 Last updated: 2023-12-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Willfahrt, Andreas

Search in DiVA

By author/editor
Willfahrt, Andreas
By organisation
Physics and ElectronicsFaculty of Science & Engineering
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 444 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf