liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optical properties of biomimetic probes engineered from erythrocytes
Department of Bioengineering, University of California, Riverside, CA 92521, USA.
Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612, USA.
Department of Complex Matter, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612, USA.
Show others and affiliations
2016 (English)In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 28, no 3, article id 035101Article in journal (Refereed) Published
Abstract [en]

Light-activated theranostic materials offer a potential platform for optical imaging and phototherapeutic applications. We have engineered constructs derived from erythrocytes, which can be doped with the FDA-approved near infrared (NIR) chromophore, indocyanine green (ICG). We refer to these constructs as NIR erythrocyte-mimicking transducers (NETs). Herein, we investigated the effects of changing the NETs mean diameter from micron- (≈4 μm) to nano- (≈90 nm) scale, and the ICG concentration utilized in the fabrication of NETs from 5 to 20 μM on the resulting absorption and scattering characteristics of the NETs. Our approach consisted of integrating sphere-based measurements of light transmittance and reflectance, and subsequent utilization of these measurements in an inverse adding-doubling algorithm to estimate the absorption (μ a) and reduced scattering (μ s') coefficients of these NETs. For a given NETs diameter, values of μ a increased over the approximate spectral band of 630–860 nm with increasing ICG concentration. Micron-sized NETs produced the highest peak value of μ a when using ICG concentrations of 10 and 20 μM, and showed increased values of μ s' as compared to nano-sized NETs. Spectral profiles of μ s' for these NETs showed a trend consistent with Mie scattering behavior for spherical objects. For all NETs investigated, changing the ICG concentration minimally affected the scattering characteristics. A Monte Carlo-based model of light distribution showed that the presence of these NETs enhanced the fluence levels within simulated blood vessels. These results provide important data towards determining the appropriate light dosimetry parameters for an intended light-based biomedical application of NETs.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2016. Vol. 28, no 3, article id 035101
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:liu:diva-152317DOI: 10.1088/1361-6528/28/3/035101OAI: oai:DiVA.org:liu-152317DiVA, id: diva2:1265504
Available from: 2018-11-23 Created: 2018-11-23 Last updated: 2018-11-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Saager, Rolf B.

Search in DiVA

By author/editor
Saager, Rolf B.
In the same journal
Nanotechnology
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf