liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrochromic display cells driven by an electrolyte-gated organic field-effect transistor
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
ACREO AB, Bredgatan 34, SE-602 21 Norrköping, Sweden.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-5365-6140
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-8845-6296
Show others and affiliations
2009 (English)In: Organic electronics, ISSN 1566-1199, Vol. 10, no 6, 1195-1199 p.Article in journal (Refereed) Published
Abstract [en]

Monolithic integration of an electrolyte-gated organic field-effect transistor (OFET) and an organic electrochromic pixel is reported. Thanks to its versatility, the polyanionic proton conductor poly(styrenesulfonic acid) (PSSH) can serve both as the gate “insulator” in OFETs and as the electrolyte in electrochromic display pixels. Employing identical materials in both the display cells and in the driver transistors is a necessary prerequisite to achieve robust displays possible to manufacture on flexible carriers using printing tools. Smart pixels combining depletion mode electrochemical transistors and electrochromic displays have been reported in the past. Here, an enhancement mode OFET as the driver enables relatively shorter updating times and much simpler addressing and updating schemes.

Place, publisher, year, edition, pages
2009. Vol. 10, no 6, 1195-1199 p.
Keyword [en]
Organic field-effect transistor (OFET); Electrolyte-gated OFET; Electrochromic display; Active matrix display; Smart pixel
National Category
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-15728DOI: 10.1016/j.orgel.2009.06.008OAI: oai:DiVA.org:liu-15728DiVA: diva2:127136
Available from: 2008-12-04 Created: 2008-12-01 Last updated: 2017-02-03Bibliographically approved
In thesis
1. Electrolyte: Semiconductor Combinations for Organic Electronic Devices
Open this publication in new window or tab >>Electrolyte: Semiconductor Combinations for Organic Electronic Devices
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The discovery of semi-conducting organic materials has opened new possibilities for electronic devices and systems because of their solution processibility, lightweight and flexibility compared to inorganic semiconductors. The combination of semiconductors with electrolytes, and more especially organic semiconductors and solid electrolytes has attracted the attention of researchers because of the multiple phenomena originating from the simultaneous motion of electrons and ions.

This thesis deals with organic-based devices whose working mechanism involves electrolytes. By measuring electrochromism induced by the field in isolated segments of conjugated polymer films, which is in contact with an electrolyte, the direction and the magnitude of the electric field along an electrolyte is quantified (paper I). In addition, using a polyanionic proton conductor in organic field-effect transistor (OFET) as gate dielectric results in low operation voltage and fast response thanks to the high capacitance of the electric double layer (EDLC) that is formed at organic semiconductor/ polyelectrolyte interface (paper III). Because an electrolyte is used as a gate insulator, the effect of the ionic currents on the performance of an EDLC-OFET has been investigated by varying the relative humidity of the device ambience (paper IV). Since the EDLC-OFET and the electrochromic display cell both are operated at low voltages, the transistor has been monolithically integrated with an electrochromic pixel, i.e. combining a solid state device and an electrochemical device (paper V). Further, a theoretical study of the electrostatic potential within a so called pen-heterojunction made up of two semi-infinite, doped semiconductor media separated by an electrolyte region is reported (paper II).

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2009. 58 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1228
National Category
Inorganic Chemistry
Identifiers
urn:nbn:se:liu:diva-15775 (URN)978-91-7393-735-1 (ISBN)
Public defence
2009-01-09, TP2, Täppan, Campus Norrköping, Linköpings universitet, Norrköping, 10:15 (English)
Opponent
Supervisors
Available from: 2008-12-03 Created: 2008-12-03 Last updated: 2017-02-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textLink to Ph.D. Thesis

Authority records BETA

Said, EliasEngquist, IsakCrispin, XavierBerggren, Magnus

Search in DiVA

By author/editor
Said, EliasEngquist, IsakCrispin, XavierBerggren, Magnus
By organisation
Department of Science and TechnologyThe Institute of Technology
In the same journal
Organic electronics
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 331 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf