The resolution of wavelength scanning of diode laser can influence the performance of interferometer mostly. In this article, we propose a method to improve the precision of wavelength calibration by using the theory of energy centrobaric correction for discrete spectrum. An optical wedge whose angle of tilt was known has been set in the optical system to measure the series of wavelength on time using a 2D Fourier Transfer (FT) of the interferograms generated by both surfaces of optical wedge. An energy centrobaric correction method is also put forward to evaluate the distribution of frequency and phase of fringe pattern generated by front and rear surface of optical wedge. The results of simulation and experiment show that the error of wavelength calibration reach to 0.01pm by correlating the distribution of frequency and phase of interferograms. The benefit is that the precision of wavelength of diode laser is improved significantly with a higher signal-to-noise ratio. This method can used to any tunable diode laser wavelength to improve the precision of measurement due to its simplicity and practicability.
Funding Agencies|National Science and Technology Major Project [2016YFF0101905]; High-end Foreign Experts Program of China [GDW20153100099]