liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Phase Stability of Dynamically Disordered Solids from First Principles
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering.
2018 (English)In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 22, article id 225702Article in journal (Refereed) Published
Abstract [en]

Theoretical studies of phase stability in solid materials with dynamic disorder are challenging due to the failure of the standard picture of atoms vibrating around fixed equilibrium positions. Dynamically disordered solid materials show immense potential in applications. In particular, superionic conductors, where the disorder results in exceptionally high ionic conductivity, are very promising as solid state electrolytes in batteries and fuel cells. The biggest obstacle in living up to this potential is the limited stability of the dynamically disordered phases. Here, we outline a method to obtain the free energy of a dynamically disordered solid. It is based on a stress-strain thermodynamic integration on a deformation path between a mechanically stable ordered variant of the disordered phase, and the dynamically disordered phase itself. We show that the large entropy contribution associated with the dynamic disorder is captured in the behavior of the stress along the deformation path. We apply the method to Bi2O3, whose superionic delta phase is the fastest known solid oxide ion conductor. We accurately reproduce the experimental transition enthalpy and the critical temperature of the phase transition from the low temperature ground state a phase to the superionic d phase. The method can be used for a first-principles description of the phase stability of superionic conductors and other materials with dynamic disorder, when the disordered phase can be connected to a stable phase through a continuous deformation path.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC , 2018. Vol. 121, no 22, article id 225702
National Category
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-153532DOI: 10.1103/PhysRevLett.121.225702ISI: 000451581600011PubMedID: 30547633OAI: oai:DiVA.org:liu-153532DiVA, id: diva2:1273233
Note

Funding Agencies|Swedish Research Council (VR) [2014-4750]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]

Available from: 2018-12-20 Created: 2018-12-20 Last updated: 2018-12-20

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Klarbring, JohanSimak, Sergey
By organisation
Theoretical PhysicsFaculty of Science & Engineering
In the same journal
Physical Review Letters
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 46 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf