liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy management in Swedish pulp and paper industry: benchmarking and non-energy benefits
Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
2018 (English)In: eceee 2018 Industrial Summer Study proceedings: Industrial Efficiency 2018: Leading the low-carbon transition, European Council for an Energy Efficient Economy (ECEEE), 2018, p. 313-322Conference paper, Published paper (Refereed)
Abstract [en]

Manufacturing industry has a large energy efficiency potential, yet to be utilized, known as the energy efficiency gap. This gap exists due to barriers that hinder industrial companies from making energy efficiency investments. Research also shows that the gap is even larger if energy management practices are included as well. One type of energy management practice for industrial companies is energy performance benchmarking, which deals with several organisational applications. For example, energy performance benchmarking can be used to compare a company’s degree of energy efficiency to its peers. A benchmarking approach can also be adopted on different levels of aggregation, including sector, site, and process level. Furthermore, continuous work with energy management also entails additional benefits beyond the energy effects, known as non-energy benefits. In an energy management context, these benefits might for instance be organisational or informational in nature. The aim of this paper is to study these aspects of energy management – benchmarking and non-energy benefits – within the Swedish pulp and paper industry.

These aspects of energy management have not, to the authors’ knowledge, been extensively investigated. The adopted method for data collection is a mixed method approach, where a questionnaire was sent to all operating pulp and paper mills in Sweden, and semi-structured interviews were carried out at six mills. The findings in this study show that the most common benchmarking method in the Swedish pulp and paper mills is external benchmarking within a company group. The benchmarking method with the highest perceived value for a mill’s energy management, however, is historical benchmarking of energy use. Furthermore, the pulp and paper mills have perceived a number of non-energy benefits from energy management practices, where top management’s interest in energy efficiency issues increasing more than expected was perceived as the most substantial.

Place, publisher, year, edition, pages
European Council for an Energy Efficient Economy (ECEEE), 2018. p. 313-322
Series
eceee Industrial Summer Study proceedings, ISSN 2001-7979, E-ISSN 2001-7987 ; 20118
Keywords [en]
energy management, non-energy benefits (NEBs), benchmarking, pulp and paper industry, energy performance benchmarking
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:liu:diva-156296ISBN: 978-91-983878-3-4 (electronic)ISBN: 978-91-983878-2-7 (print)OAI: oai:DiVA.org:liu-156296DiVA, id: diva2:1304225
Conference
ECEEE Industrial Summer Study – Leading the low-carbon transition, Berlin, June 11-13
Available from: 2019-04-11 Created: 2019-04-11 Last updated: 2020-12-15Bibliographically approved
In thesis
1. Non-Energy Benefits of Industrial Energy Efficiency: Roles and Potentials
Open this publication in new window or tab >>Non-Energy Benefits of Industrial Energy Efficiency: Roles and Potentials
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Climate and environmental targets place significant requirements on energy efficiency and improved industrial energy efficiency is viewed as one of the most important means of reducing CO2 emissions and mitigating climate change. Even though efforts have been undertaken to improve energy efficiency there is still the potential for further improvements to be made. The potential is a result of that proposed energy efficiency improvement measures are not implemented, even if judged as cost-effective.

Besides improving energy efficiency, the implementation of energy efficiency improvements in industrial firms can generate additional beneficial effects: so-called non-energy benefits. Examples of non-energy benefits are: improved productivity, lower operation and maintenance costs, a better work environment, decreased waste and fewer external effects, such as lower emissions. This thesis has investigated the roles and potential of non-energy benefits in decisions on energy efficiency improvements from three perspectives: energy efficiency measures, energy efficiency investments and energy management activities.

The results of the studies presented in this thesis demonstrated that different types of non-energy benefits were observed in various areas within industrial firms due to the energy efficiency measures, energy efficiency investments and energy management activities they have implemented. Studying energy efficiency measures and investments revealed that implementing one single energy efficiency measure or investment can generate several non-energy benefits. The studies also uncovered a relationship between the non-energy benefits, i.e. chain reactions of primary, secondary and further effects, in which one benefit can generate other types of benefits. Consequently, some non-energy benefits were observed immediately after the implementation of energy efficiency measures, direct effects, while others were perceived later on, indirect effects. Furthermore, extending the perspective by including energy management activities led to the recognition of novel non-energy benefits.

The results of this thesis demonstrated that non-energy benefits were seldom acknowledged in decisions on energy efficiency improvements. However, the non-energy benefits’ character, diversity and relations among them enabled opportunities for the non-energy benefits to be included in decisions on energy efficiency in various ways. For instance, based on the results of these studies, monetised non-energy benefits could be included in investment calculations contributing to cost-effectiveness, while certain effects that are difficult to measure and quantify could be utilised qualitatively in investment evaluations as extra arguments, or, if important to the firm, as objectives for making the investment. Hence, depending on their type, non-energy benefits seemed to have different roles in decisions on industrial energy efficiency improvements.

This thesis contributed with a comprehensive approach by investigating energy efficiency improvements and the related non-energy benefits through three perspectives. By combining the results from each perspective, the view on industrial firms’ decisions on energy efficiency improvements was widened. In this thesis it is concluded that the potential of non-energy benefits in decision-making on industrial energy efficiency improvements lies in the utilisation of all types of non-energy benefits and to consider all the roles that non-energy benefits may have. By utilising knowledge on non-energy benefits along with their roles observed in relation to previous implementations of energy efficiency improvements, non-energy benefits can impact decisions on new implementations.

Abstract [sv]

Effektivisering av industrins energianvändning ses som ett av de viktigaste redskapen för att minska koldioxidutsläppen i syfte att mildra klimatpåverkan och nå uppsatta klimat- och miljömål. Konkurrens och resursbrist driver industrin till att effektivisera och kopplingen mellan energi och tillverkningsprocesser i företagen betyder att energieffektivisering är av vikt då den även bidrar till effektivisering generellt inom företaget. Trots detta genomförs inte alla föreslagna åtgärder även om de är kostnadseffektiva, vilket gör att det finns en potential till ytterligare industriell energieffektivisering.

Förutom energibesparing och energikostnadsbesparing kan implementering av energieffektiviserande åtgärder även ge ytterligare positiva effekter för företaget, så kallade mervärden (eng. non-energy benefits), exempelvis i form av ökad produktivitet, ökad livslängd för maskiner och utrustning, förbättrad arbetsmiljö samt minskad mängd utsläpp och avfall. Denna avhandling har studerat mervärdens roller och potential i beslut kring energieffektiviserande åtgärder och investeringar samt energiledningsaktiviteter.

Resultaten visade att implementering av energieffektiviserande åtgärder och investeringar samt energiledningsaktiviteter gav flera olika typer av mervärden observerade på olika nivåer och inom olika delar av verksamheten i industriföretag. Genom att studera mervärden ur flera perspektiv synliggjordes nya typer av mervärden samt att implementering av en enstaka energieffektiviserande åtgärd kan generera ett flertal mervärden av olika typ. Vidare sågs även samband mellan olika mervärden, dvs att ett mervärde gav upphov till ett flertal andra mervärden.

Resultaten av dessa studier visade att användningen av mervärden vid beslut kring energieffektivisering begränsas av att många mervärden är svåra att mäta och kvantifiera. Trots att många mervärden var svåra att värdera i pengar och inkludera i investeringskalkyler, visade resultaten att mervärden ibland användes kvalitativt i investeringsunderlag som extra argument. Om mervärdet var av stor vikt kunde det till och med anses vara del utav syftet med en energieffektiviserande investering. Detta visade på mervärdens olika roller beroende på deras karaktär samt hur viktiga de ansågs vara för företaget.

Denna avhandling har studerat energieffektiviseringar och relaterade mervärden ur tre perspektiv. Genom att kombinera resultaten från varje perspektiv erhölls en bredare syn på beslut kring energieffektivisering. Resultaten i denna avhandling visade att mervärden kan bidra på olika sätt i beslut kring energieffektiviseringar beroende på deras olika roller samt att mervärdens potential i sådana beslut beror på om och hur mervärdens olika roller beaktas och används. Genom att använda kunskap om mervärden och deras olika roller som observerats i samband med tidigare energieffektiviserande implementeringar, kan mervärden bidra till att påverka beslut vid planering av nya energieffektiviserande implementeringar.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. p. 114
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1980
National Category
Energy Systems
Identifiers
urn:nbn:se:liu:diva-156297 (URN)10.3384/diss.diva-156297 (DOI)9789176851067 (ISBN)
Public defence
2019-05-29, ACAS, Hus A, Campus Valla, Linköping, 10:15 (Swedish)
Opponent
Supervisors
Available from: 2019-04-25 Created: 2019-04-11 Last updated: 2019-04-30Bibliographically approved
2. Enabling industrial energy benchmarking: Process-level energy end-use, key performance indicators, and efficiency potential
Open this publication in new window or tab >>Enabling industrial energy benchmarking: Process-level energy end-use, key performance indicators, and efficiency potential
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

One of the greatest challenges of our time is global climate change. A key strategy for mitigating the emission of greenhouse gases is the improvement of energy efficiency. Manufacturing industry stands for a large share of global energy end-use but has yet to achieve its full energy efficiency potential. A barrier to untapping this potential is the lack of detailed data on industrial energy end-use at the process level, preventing the development of sound, bottom-up energy key performance indicators (KPIs). This hampers the ability to create a profound strategy for improving industrial energy efficiency because it is not known in which end-use processes the largest energy efficiency potential is to be found. Increasing knowledge about energy end-use at the process level also increases the possibility for energy comparisons, i.e. benchmarking, at the process level.

This thesis aimed to investigate how to further enable industrial energy benchmarking at the process level, primarily for the pulp and paper and wood industries. Relevant benchmarking requires that data on energy end-use is collected using a common, harmonized categorization of processes and that joint energy KPIs are applied. Therefore, suggestions for standardized categorizations of end-use processes were investigated for the studied industries.

Based on the calculations, and under the assumptions made in this thesis for estimating the energy efficiency potential of end-use processes, diversity was found between industries around which type of processes have the largest efficiency potential. It also emerged that, due to the lack of detailed data about energy end-use and lack of information about energy efficiency measures, processes accounting for a significant share of the energy efficiency potential in the wood industry risk being overlooked. It is not certain that current energy policies are sufficient to reach the full potential identified. The lack of information about energy end-use and energy efficiency measures implies that neither industrial actors nor policy-makers are able to develop thorough energy strategies or roadmaps for improved energy efficiency.

While the outcomes of this thesis show that a large share of Swedish pulp and paper mills carry out energy benchmarking to some degree, energy managers emphasized that benchmarking in this particular industry is difficult because it requires a deep understanding of the industry’s heterogenous and integrated processes. This thesis proposes a widened perspective on energy benchmarking and its role in industrial energy management; namely, also considering the process of how energy KPIs are implemented within in-house energy management. A process that enhances energy management includes the continuous monitoring, visualization, and revision of KPIs. In this thesis, a method is developed that encourages the bottom-up implementation of energy KPIs in the pulp and paper industry, which further enables industrial energy benchmarking.

Abstract [sv]

En av vår tids största utmaningar är den globala klimatförändringen. En viktig strategi för att minska utsläppen av växthusgaser är att förbättra energieffektiviteten. Tillverkande industri står för en stor del av den globala energianvändningen och har fortfarande en potential för energieffektivisering som inte utnyttjats. Ett hinder mot att uppnå potentialen är bristen på detaljerad information om energianvändningen i industrins processer. Detta försvårar också för utveckling av relevanta energinyckeltal baserade på enskilda processers energianvändning. Vidare hindrar detta möjligheten för en djupgående strategi för hur man kan förbättra energieffektiviteten i tillverkande industri eftersom det inte är känt inom vilka processer som den största potentialen för energieffektivisering finns. Genom att öka kunskapen om energianvändning ökar också möjligheten att jämföra energiprestandan mellan företag, det vill säga benchmarking, på processnivå.

Denna avhandling syftade till att undersöka hur man ytterligare kan möjliggöra industriell benchmarking av energieffektivitet på processnivå, med fokus på massa- och pappersindustrin och trävaruindustrin. För relevant benchmarking krävs att energianvändningsdata sammanställs efter en gemensam och harmoniserad kategorisering av industriella processer. Det är också nödvändigt att använda sig av gemensamma energinyckeltal. Därför undersöktes i avhandlingen möjligheter till standardiserade kategoriseringar av energianvändande processer för de studerade industrierna.

Baserat på de antaganden som gjordes för att uppskatta potentialen för energieffektivisering visades att det fanns en diversitet mellan branscher för vilken typ av processer som har störst potential. Det framkom också att bristen på information om energieffektiviseringsåtgärder riskerar medföra att processer med stor potential i trävaruindustrin förbises. Det är vidare inte säkert att existerande styrmedel är tillräckliga för att uppnå hela potentialen för energieffektivisering. Bristen på information om energianvändning på processnivå och effektiviseringsåtgärder innebär att varken industriella aktörer eller beslutsfattare kan utveckla välgrundade energistrategier eller färdplaner för ökad energieffektivitet.

Även om resultaten från denna avhandling visade att en stor andel av de svenska massa- och pappersbruken praktiserar någon typ av benchmarking av energieffektivitet, betonade energimanagers att benchmarking är svårt att genomföra eftersom det kräver en djup förståelse av branschens processer. Därför föreslås ett bredare perspektiv av energibenchmarking och dess roll i energiledningsarbetet som också inkluderar processen i hur energinyckeltal implementeras. För en framgångsrik implementeringsprocess är det viktigt med kontinuerlig uppföljning, visualisering och revidering av energinyckeltalen. I den här avhandlingen har en metod utvecklats för implementering av energinyckeltal i massa- och pappersindustrin baserat på en bottom-up-approach.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2020. p. 76
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2076
Keywords
Energy efficiency, energy efficiency potential, energy benchmarking, manufacturing industry, key performance indicators, industrial energy end-use
National Category
Energy Systems
Identifiers
urn:nbn:se:liu:diva-168342 (URN)10.3384/diss.diva-168342 (DOI)9789179298371 (ISBN)
Public defence
2020-10-16, ACAS, A-Building, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, 40537-1Swedish Energy Agency, 40491-1Swedish Environmental Protection Agency, 802-0082-17Swedish Agency for Marine and Water Management, 802-0082-17
Available from: 2020-08-21 Created: 2020-08-20 Last updated: 2020-10-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Nehler, ThereseAndersson, Elias

Search in DiVA

By author/editor
Nehler, ThereseAndersson, Elias
By organisation
Energy SystemsFaculty of Science & Engineering
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 330 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf