liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Real-time sensing of lead with epitaxial graphene-integrated microfluidic devices
Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-1000-0437
Show others and affiliations
2019 (English)In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 288, p. 425-431Article in journal (Refereed) Published
Abstract [en]

Since even low concentrations of toxic heavy metals can seriously damage human health, it is important to develop simple, sensitive and accurate methods for their detection. Graphene, which is extremely sensitive to foreign species, is a key element in the development of a sensing platform where low concentrations of analyte have to be detected. This work discusses the proof of concept of a sensing platform for liquid-phase detection of heavy metals (e.g. Pb) based on epitaxial graphene sensors grown on Si-face 4H-SiC substrate (EG/SiC). The sensing platform developed includes a microfluidic chip incorporating all the features needed to connect and execute the Lab-on-chip (LOC) functions using 3D printing fast prototyping technology. Herein, we present the response of EG to concentrations of Pb2+ solutions ranging from 125 nM to 500 mu M, showing good stability and reproducibility over time and an enhancement of its conductivity with a Langmuir correlation between signal and Pb2+ concentration. Density functional theory (DFT) calculations are performed and clearly explain the conductivity changes and the sensing mechanism in agreement with the experimental results reported, confirming the strong sensitivity of the sensor to the lowest concentrations of the analyte. Furthermore, from the calibration curve of the system, a limit of detection (LoD) of 95 nM was extrapolated.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE SA , 2019. Vol. 288, p. 425-431
Keywords [en]
Epitaxial graphene; Extreme sensitivity; Real time monitoring; 3D printed lab-on-chip; Heavy metals detection
National Category
Analytical Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-156374DOI: 10.1016/j.snb.2019.03.021ISI: 000462468000054OAI: oai:DiVA.org:liu-156374DiVA, id: diva2:1305821
Note

Funding Agencies|Swedish Foundation for Strategic research (SSF) [GMT14-0077, RMA15-024]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]

Available from: 2019-04-18 Created: 2019-04-18 Last updated: 2019-04-18

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Santangelo, FrancescaShtepliuk, IvanFilippini, DanielIvanov, Ivan GueorguievYakimova, RositsaEriksson, Jens
By organisation
Sensor and Actuator SystemsFaculty of Science & EngineeringSemiconductor Materials
In the same journal
Sensors and actuators. B, Chemical
Analytical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 45 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf