liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt144",{id:"formSmash:upper:j_idt144",widgetVar:"widget_formSmash_upper_j_idt144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt145_j_idt147",{id:"formSmash:upper:j_idt145:j_idt147",widgetVar:"widget_formSmash_upper_j_idt145_j_idt147",target:"formSmash:upper:j_idt145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Coherent functors and asymptotic propertiesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Linköping: Linköping University Electronic Press, 2019. , p. 43
##### Series

Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1982
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-156730DOI: 10.3384/diss.diva-156730ISBN: 9789176850954 (print)OAI: oai:DiVA.org:liu-156730DiVA, id: diva2:1315353
##### Public defence

2019-06-04, BL32, B-huset, Campus Valla, Linköping, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt435",{id:"formSmash:j_idt435",widgetVar:"widget_formSmash_j_idt435",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt442",{id:"formSmash:j_idt442",widgetVar:"widget_formSmash_j_idt442",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt448",{id:"formSmash:j_idt448",widgetVar:"widget_formSmash_j_idt448",multiple:true});
##### Note

##### List of papers

In this thesis we study properties of the so called coherent functors. Coherent functors were first introduced by Auslander in 1966 in a general setting. Coherent functors have been used since then as powerful tools for different purposes: to describe infinitesimal deformation theory, to describe algebraicity of a stack or to study properties of Rees algebras.

In 1998, Hartshorne proved that half exact coherent functors over a discrete valuation ring 𝐴 are direct sums of the identity functor, Hom-functors of quotient modules of 𝐴 and tensor products of quotient modules of 𝐴. In our first article (Paper A), we obtain a similar characterization for half exact coherent functors over a much wider class of rings: Dedekind domains. This fact allows us to classify half exact coherent functors over Dedekind domains.

In our second article (Paper B), coherent functors over noetherian rings are considered. We study asymptotic properties of sets of prime ideals connected with coherent functors applied to artinian modules or finitely generated modules. Also considering quotient modules *M /a ^{n}M*, where an is the

Minor errors has been corrected in the electronic version. See the Errata list for more information what have been corrected.

Available from: 2019-05-13 Created: 2019-05-13 Last updated: 2019-06-20Bibliographically approved1. Half–Exact Coherent Functors over PIDs and Dedekind Domains$(function(){PrimeFaces.cw("OverlayPanel","overlay930732",{id:"formSmash:j_idt506:0:j_idt510",widgetVar:"overlay930732",target:"formSmash:j_idt506:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Coherent functors and asymptotic stability$(function(){PrimeFaces.cw("OverlayPanel","overlay1290543",{id:"formSmash:j_idt506:1:j_idt510",widgetVar:"overlay1290543",target:"formSmash:j_idt506:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1214",{id:"formSmash:j_idt1214",widgetVar:"widget_formSmash_j_idt1214",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1267",{id:"formSmash:lower:j_idt1267",widgetVar:"widget_formSmash_lower_j_idt1267",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1268_j_idt1270",{id:"formSmash:lower:j_idt1268:j_idt1270",widgetVar:"widget_formSmash_lower_j_idt1268_j_idt1270",target:"formSmash:lower:j_idt1268:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});