liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
SOLVABILITY CRITERIA FOR THE NEUMANN p-LAPLACIAN WITH IRREGULAR DATA
Linköping University, Department of Mathematics, Mathematics and Applied Mathematics. Linköping University, Faculty of Science & Engineering. Univ Liverpool, England.
2019 (English)In: St. Petersburg Mathematical Journal, ISSN 1061-0022, E-ISSN 1547-7371, Vol. 30, no 3, p. 485-492Article in journal (Refereed) Published
Abstract [en]

Necessary and sufficient conditions are found for the unique solvability of the Neumann problem for the p-Laplace operator. They characterize both the domain and measures on the right-hand sides.

Place, publisher, year, edition, pages
AMER MATHEMATICAL SOC , 2019. Vol. 30, no 3, p. 485-492
Keywords [en]
Level surface; weak solution; Poincare inequality; isocapacitary function
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:liu:diva-157282DOI: 10.1090/spmj/1555ISI: 000464555700008OAI: oai:DiVA.org:liu-157282DiVA, id: diva2:1323797
Available from: 2019-06-12 Created: 2019-06-12 Last updated: 2019-06-12

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Mazya, Vladimir
By organisation
Mathematics and Applied MathematicsFaculty of Science & Engineering
In the same journal
St. Petersburg Mathematical Journal
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 59 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf