liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Capturing and Rendering with Incident Light Fields
Linköping University, Department of Science and Technology, Visual Information Technology and Applications (VITA). Linköping University, The Institute of Technology.ORCID iD: 0000-0002-7765-1747
University of Southern California Institute for Creative Technologies, United States.
University of Southern California Institute for Creative Technologies, United States.
University of Southern California Institute for Creative Technologies, United States.
Show others and affiliations
2003 (English)In: EGSR’03, The 14th Eurographics Symposium on Rendering 2003, Leuven, Belgium, 2003Conference paper, Published paper (Refereed)
Abstract [en]

This paper presents a process for capturing spatially and directionally varying illumination from a real-world scene and using this lighting to illuminate computer-generated objects. We use two devices for capturing such illumination. In the first we photograph an array of mirrored spheres in high dynamic range to capture the spatially varying illumination. In the second, we obtain higher resolution data by capturing images with an high dynamic range omnidirectional camera as it traverses across a plane. For both methods we apply the light field technique to extrapolate the incident illumination to a volume. We render computer-generated objects as illuminated by this captured illumination using a custom shader within an existing global illumination rendering system. To demonstrate our technique we capture several spatially-varying lighting environments with spotlights, shadows, and dappled lighting and use them to illuminate synthetic scenes. We also show comparisons to real objects under the the same illumination.

Place, publisher, year, edition, pages
2003.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-16281OAI: oai:DiVA.org:liu-16281DiVA: diva2:133592
Available from: 2009-01-13 Created: 2009-01-13 Last updated: 2015-09-22Bibliographically approved
In thesis
1. Incident Light Fields
Open this publication in new window or tab >>Incident Light Fields
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Image based lighting, (IBL), is a computer graphics technique for creating photorealistic renderings of synthetic objects such that they can be placed into real world scenes. IBL has been widely recognized and is today used in commercial production pipelines. However, the current techniques only use illumination captured at a single point in space. This means that traditional IBL cannot capture or recreate effects such as cast shadows, shafts of light or other important spatial variations in the illumination. Such lighting effects are, in many cases, artistically created or are there to emphasize certain features, and are therefore a very important part of the visual appearance of a scene.

This thesis and the included papers present methods that extend IBL to allow for capture and rendering with spatially varying illumination. This is accomplished by measuring the light field incident onto a region in space, called an Incident Light Field, (ILF), and using it as illumination in renderings. This requires the illumination to be captured at a large number of points in space instead of just one. The complexity of the capture methods and rendering algorithms are then significantly increased.

The technique for measuring spatially varying illumination in real scenes is based on capture of High Dynamic Range, (HDR), image sequences. For efficient measurement, the image capture is performed at video frame rates. The captured illumination information in the image sequences is processed such that it can be used in computer graphics rendering. By extracting high intensity regions from the captured data and representing them separately, this thesis also describes a technique for increasing rendering efficiency and methods for editing the captured illumination, for example artificially moving or turning on and of individual light sources.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2009. 97 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1233
Keyword
Computer Graphics, Image Based Lighting, Photorealistic Rendering, Light Fields, High Dynamic Range Imaging
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-16287 (URN)978-91-7393-717-7 (ISBN)
Public defence
2009-01-30, K3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping, 10:15 (English)
Opponent
Supervisors
Available from: 2009-01-13 Created: 2009-01-13 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

No full text

Other links

Link to the Ph.D. Thesis

Authority records BETA

Unger, Jonas

Search in DiVA

By author/editor
Unger, Jonas
By organisation
Visual Information Technology and Applications (VITA)The Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 206 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf