We propose subsampling Markov chain Monte Carlo (MCMC), an MCMC framework where the likelihood function for n observations is estimated from a random subset of m observations. We introduce a highly efficient unbiased estimator of the log-likelihood based on control variates, such that the computing cost is much smaller than that of the full log-likelihood in standard MCMC. The likelihood estimate is bias-corrected and used in two dependent pseudo-marginal algorithms to sample from a perturbed posterior, for which we derive the asymptotic error with respect to n and m, respectively. We propose a practical estimator of the error and show that the error is negligible even for a very small m in our applications. We demonstrate that subsampling MCMC is substantially more efficient than standard MCMC in terms of sampling efficiency for a given computational budget, and that it outperforms other subsampling methods for MCMC proposed in the literature. Supplementary materials for this article are available online.
Funding Agencies|Australian Research Council Center of Excellence grant [CE140100049]; VINNOVA grant [2010-02635]; Swedish Foundation for Strategic Research [RIT 15-0097]; Business School Pilot Research grant