liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Why Is Pristine PEDOT Oxidized to 33%? A Density Functional Theory Study of Oxidative Polymerization Mechanism
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
2019 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 123, no 24, p. 5160-5167Article in journal (Refereed) Published
Abstract [en]

Currently, a theoretical understanding of thermodynamics and kinetics of the oxidative polymerization of poly(3,4-ethylenedioxythiophene) (best known as PEDOT) is missing. In the present study, step-by-step density functional theory calculations of the radical polymerization of PEDOT with tosylate counterions (PEDOT:TOS) using Fe3+(TOS-)(3) as oxidant and dopant are performed. We calculate the Gibbs free energy for the conventional mechanism that consists of the polymerization of neutral PEDOT oligomers first, followed by their oxidation (doping). We also propose an alternative mechanism of polymerization, in which the already oxidized oligomers are used as reactants, leading to doped (oxidized) oligomers as products during polymerization. Our calculations indicate that the alternative mechanism is more efficient for longer PEDOT oligomers (chain length N amp;gt; 6). We find that the oxidation of the EDOT monomer is the rate-limiting step for both mechanisms. Another focus of our study is the understanding of the maximum oxidation level that can be achieved during polymerization. Our calculations provide a theoretical explanation of "the magic number" of 33% for the oxidation level typically reported for the pristine (i.e., as-polymerized) materials and relate it to the change of the character of the bonds in the oligomers (aromatic to quinoid) that occurs at this oxidation level.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2019. Vol. 123, no 24, p. 5160-5167
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-158971DOI: 10.1021/acs.jpcb.9b01745ISI: 000472800700015PubMedID: 31124678OAI: oai:DiVA.org:liu-158971DiVA, id: diva2:1338136
Note

Funding Agencies|Swedish Research Council [2016-05990]; Peter Wallenberg Foundation [PWS-2016-0010]; Advanced Functional Material Center at Linkoping University

Available from: 2019-07-19 Created: 2019-07-19 Last updated: 2019-07-19

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Kim, DonghyunZozoulenko, Igor
By organisation
Laboratory of Organic ElectronicsFaculty of Science & Engineering
In the same journal
Journal of Physical Chemistry B
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 203 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf