liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
Nanjing Tech Univ, Peoples R China.
Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering. Nanjing Tech Univ, Peoples R China.
Show others and affiliations
2019 (English)In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 10, article id 2818Article in journal (Refereed) Published
Abstract [en]

Metal halide perovskites are emerging as promising semiconductors for cost-effective and high-performance light-emitting diodes (LEDs). Previous investigations have focused on the optimisation of the emissive perovskite layer, for example, through quantum confinement to enhance the radiative recombination or through defect passivation to decrease non-radiative recombination. However, an in-depth understanding of how the buried charge transport layers affect the perovskite crystallisation, though of critical importance, is currently missing for perovskite LEDs. Here, we reveal synergistic effect of precursor stoichiometry and interfacial reactions for perovskite LEDs, and establish useful guidelines for rational device optimization. We reveal that efficient deprotonation of the undesirable organic cations by a metal oxide interlayer with a high isoelectric point is critical to promote the transition of intermediate phases to highly emissive perovskite films. Combining our findings with effective defect passivation of the active layer, we achieve high-efficiency perovskite LEDs with a maximum external quantum efficiency of 19.6%.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP , 2019. Vol. 10, article id 2818
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:liu:diva-158964DOI: 10.1038/s41467-019-10612-3ISI: 000473002500007PubMedID: 31249295OAI: oai:DiVA.org:liu-158964DiVA, id: diva2:1338147
Note

Funding Agencies|ERC Starting Grant [717026]; European Commission Marie Sklodowska-Curie Actions [691210]; National Key Research and Development Program of China [2016YFA0202402]; Jiangsu High Educational Natural Science Foundation [18KJA430012]; Priority Academic Program Development of Jiangsu Higher Education Institutions; 111 program; Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC); China Scholarship Council; National Natural Science Foundation of China [61704077]; Natural Science Foundation of Jiangsu Province [BK20171007]

Available from: 2019-07-19 Created: 2019-07-19 Last updated: 2019-07-19

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Yuan, ZhongchengHu, Zhang-JunXu, WeidongKuang, ChaoyangBai, SaiGao, Feng
By organisation
Biomolecular and Organic ElectronicsFaculty of Science & EngineeringMolecular Surface Physics and Nano Science
In the same journal
Nature Communications
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf