liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Creep-fatigue interaction in heat resistant austenitic alloys
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering. AB Sandvik Mat Technol, Sweden.
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-8304-0221
2018 (English)In: 12TH INTERNATIONAL FATIGUE CONGRESS (FATIGUE 2018), E D P SCIENCES , 2018, Vol. 165, article id 05001Conference paper, Published paper (Refereed)
Abstract [en]

This work includes an investigation of two commercial austenitic steels: UNS S21500 (Esshete 1250) and UNS S31035 (Sandvik Sanicro (TM) 25). The materials were exposed to isothermal strain controlled fatigue with load controlled dwell time at maximum strain. The testing temperature used was 700 degrees C and the test cycles were performed in tension. Mechanical test data were obtained and analysed in order to define creep-fatigue damage diagrams at failure for the investigated austenitic alloys. During the given conditions, Sanicro 25 showed superior creep-fatigue life, suffered less amount of creep elongation for the same amount of strain amplitude and dwell times compared to Esshete 1250. Both alloys showed creep-fatigue interaction damage for specific test configurations.

Place, publisher, year, edition, pages
E D P SCIENCES , 2018. Vol. 165, article id 05001
Series
MATEC Web of Conferences, ISSN 2261-236X
National Category
Infrastructure Engineering
Identifiers
URN: urn:nbn:se:liu:diva-159905DOI: 10.1051/matecconf/201816505001ISI: 000478990600046OAI: oai:DiVA.org:liu-159905DiVA, id: diva2:1346099
Conference
12th International Fatigue Congress (FATIGUE)
Note

Funding Agencies|AB Sandvik Materials Technology in Sweden; Swedish Energy Agency through Research Consortium of Materials Technology for Thermal Energy Processes [KME-701]; AFM Strategic Faculty Grant SFO-MAT-LiU at Linkoping University [2009-00971]

Available from: 2019-08-27 Created: 2019-08-27 Last updated: 2019-08-27

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Wärner, HugoCalmunger, MattiasChai, GuocaiMoverare, Johan
By organisation
Engineering MaterialsFaculty of Science & Engineering
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf