liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structural coloration by inkjet-printing of optical microcavities and metasurfaces
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
Show others and affiliations
2019 (English)In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 7, no 28, p. 8698-8704Article in journal (Refereed) Published
Abstract [en]

Structural color generation by plasmonic and other means has attracted significant interest as a solution to avoid inks based on dyes. Prominent advantages include better robustness compared with organic dyes while also providing high chromaticity and brightness in ultrathin films. However, lack of cheap and scalable fabrication techniques has so far limited structural coloration to only a few applications and functional devices. Here, we demonstrate reflective (plasmonic) structural coloration at high resolution by inkjet printing on non-patterned surfaces. The method is flexible, scalable to large areas, and avoids complicated or costly fabrication steps. Optical microcavities on flexible plastic substrates were made starting with an inkjet-printed silver film as a bottom mirror. Inkjet-printed organic dielectric micropixels then served as the spacer layer, resulting in optical microcavities with reflective structural colors after coating with a thin semi-transparent metallic top layer. Optimization of ink formulation allowed for uniform pixels with minimum coffee stain effects as well as control of spacer thickness (around 50-150 nm) and color by varying the solid content of the ink. We investigate the possibility to obtain red, green and blue (RGB) pixels and demonstrate the improvement of particularly the blue coloration using wavelength-dependent plasmon absorption of gold nanoislands as a top mirror. Inkjet printing of optical microcavities and plasmonic cavities may find use in various applications, such as reflective displays in color.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY , 2019. Vol. 7, no 28, p. 8698-8704
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-159883DOI: 10.1039/c9tc02796cISI: 000479006800026OAI: oai:DiVA.org:liu-159883DiVA, id: diva2:1346232
Note

Funding Agencies|Swedish Foundation for Strategic Research; AForsk Foundation; Wenner-Gren Foundations; Swedish Research Council; Royal Swedish Academy of Sciences; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009 00971]

Available from: 2019-08-27 Created: 2019-08-27 Last updated: 2019-08-27

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Sardar, SamimWojcik, PawelKang, EvanShanker, RaviJonsson, Magnus
By organisation
Laboratory of Organic ElectronicsFaculty of Science & Engineering
In the same journal
Journal of Materials Chemistry C
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 202 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf