liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Distinguishing Between Cyclopropylfentanyl and Crotonylfentanyl by Methods Commonly Available in the Forensic Laboratory
Oslo Univ Hosp, Norway; Univ Oslo, Norway.
Oslo Univ Hosp, Norway; Univ Oslo, Norway.
Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences.
Univ Oslo, Norway.
Show others and affiliations
2019 (English)In: Therapeutic Drug Monitoring, ISSN 0163-4356, E-ISSN 1536-3694, Vol. 41, no 4, p. 519-527Article in journal (Refereed) Published
Abstract [en]

Background: The opioid analgesic fentanyl and its analogues pose a major health concern due to its high potency and the increasing number of overdose deaths worldwide. The analogues of fentanyl may differ in potency, toxicity, and legal status, and it is therefore important to develop analytical methods for their correct identification. This can be challenging since many fentanyl analogues are structural isomers. Two fentanyl isomers that have been in the spotlight lately due to difficulties regarding separation and identification are cyclopropylfentanyl and crotonylfentanyl, which have been reported to display nearly identical fragmentation patterns and chromatographic behavior. Methods: Chromatographic separation of cyclopropylfentanyl and crotonylfentanyl by ultra-high-performance liquid chromatography was investigated using 3 different stationary phases (high strength silica T3, ethylsiloxane/silica hybrid C-18, and Kinetex biphenyl) using gradient elution with a mobile phase consisting of 10 mM ammonium formate pH 3.1 and MeOH. Detection was performed by tandem mass spectrometry. In addition, the major metabolites of the 2 compounds formed on incubation with human liver microsomes were identified by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis. Results: Baseline separation of cyclopropylfentanyl and crotonylfentanyl was achieved on the ethylsiloxane/silica hybrid C-18 column with retention times of 6.79 and 7.35 minutes, respectively. The major metabolites of the 2 analogues formed by human liver microsomes differed, with the main biotransformation being N-dealkylation and carboxylation for cyclopropylfentanyl and crotonylfentanyl, respectively. We demonstrated the usefulness of the 2 approaches by unambiguously identifying cyclopropylfentanyl, as well as its metabolites, in 2 authentic postmortem blood samples. Conclusions: In this study, we successfully demonstrated that cyclopropylfentanyl and crotonylfentanyl can be distinguished by methods commonly available in forensic laboratories.

Place, publisher, year, edition, pages
LIPPINCOTT WILLIAMS & WILKINS , 2019. Vol. 41, no 4, p. 519-527
Keywords [en]
cyclopropylfentanyl; crotonylfentanyl; structural isomer separation; metabolism; UHPLC-MS/MS
National Category
Analytical Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-160055DOI: 10.1097/FTD.0000000000000617ISI: 000480711500013PubMedID: 30807539OAI: oai:DiVA.org:liu-160055DiVA, id: diva2:1349027
Available from: 2019-09-06 Created: 2019-09-06 Last updated: 2019-09-06

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Wohlfarth, Ariane
By organisation
Division of Drug ResearchFaculty of Medicine and Health Sciences
In the same journal
Therapeutic Drug Monitoring
Analytical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf