liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of the crystallographic fatigue crack growth rate in a single-crystal nickel-base superalloy
Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, Faculty of Science & Engineering.
Siemens Ind Turbomachinery AB, Sweden.
Siemens Ind Turbomachinery AB, Sweden.
Show others and affiliations
2019 (English)In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 127, p. 259-267Article in journal (Refereed) Published
Abstract [en]

Cracks in single-crystal nickel-base superalloys have been observed to switch cracking mode from Mode I to crystallographic cracking. The crack propagation rate is usually higher on the crystallographic planes compared to Mode I, which is important to account for in crack growth life predictions. In this paper, a method to evaluate the crystallographic fatigue crack growth rate, based on a previously developed crystallographic crack driving force parameter, is presented. The crystallographic crack growth rate was determined by evaluating heat tints on the fracture surfaces of the test specimens from the experiments. Complicated crack geometries including multiple crystallographic crack fronts were modelled in a three dimensional finite element context, The data points of the crystallographic fatigue crack growth rate collapse on a narrow scatter band for the crystallographic cracks indicating a correlation with the previously developed crystallographic crack driving force.

Place, publisher, year, edition, pages
ELSEVIER SCI LTD , 2019. Vol. 127, p. 259-267
Keywords [en]
Single-crystal nickel-base superalloys; Finite element analysis; Fracture mechanics; Stress intensity factor; Crystallographic cracking; Fatigue crack growth rate
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:liu:diva-160388DOI: 10.1016/j.ijfatigue.2019.05.023ISI: 000482492600024OAI: oai:DiVA.org:liu-160388DiVA, id: diva2:1353580
Note

Funding Agencies|Linkoping University; Siemens Industrial Turbomachinery AB

Available from: 2019-09-23 Created: 2019-09-23 Last updated: 2019-09-23

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Busse, ChristianPalmert, FransSimonsson, KjellLeidermark, Daniel
By organisation
Solid MechanicsFaculty of Science & EngineeringEngineering Materials
In the same journal
International Journal of Fatigue
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf