liu.seSearch for publications in DiVA
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analysis of Long Duration Eye-Tracking Experiments in a Remote Tower Environment
Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering. (Information Visualization)
Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering. (INV, iVis)ORCID iD: 0000-0002-9601-5981
LFV, Sweden.
LFV, Sweden.
Show others and affiliations
2019 (English)In: 13th USA/Europe Air Traffic Management Research and Development Seminar 2019: Proceedings of a meeting held 17-21 June 2019, Vienna, Austria., EUROCONTROL , 2019Conference paper, Published paper (Refereed)
Abstract [en]

Eye-Tracking experiments have proven to be of great assistance in understanding human computer interaction across many fields. Most eye-tracking experiments are non-intrusive and so do not affect the behaviour of the subject. Such experiments usually last for just a few minutes and so the spatio- temporal data generated by the eye-tracker is quite easy to analyze using simple visualization techniques such as heat maps and animation. Eye tracking experiments in air traffic control, or maritime or driving simulators can, however, last for several hours and the analysis of such long duration data becomes much more complex. We have developed an analysis pipeline, where we identify visual spatial areas of attention over a user interface using clustering and hierarchical cluster merging techniques. We have tested this technique on eye tracking datasets generated by air traffic controllers working with Swedish air navigation services, where each eye tracking experiment lasted for ∼90 minutes. We found that our method is interactive and effective in identification of interesting patterns of visual attention that would have been very difficult to locate using manual analysis.

Place, publisher, year, edition, pages
EUROCONTROL , 2019.
Keywords [en]
Remote tower, Eye tracking, Spatio-temporal clustering
National Category
Other Engineering and Technologies
Identifiers
URN: urn:nbn:se:liu:diva-160959Scopus ID: 2-s2.0-85084023193ISBN: 9781510893504 (print)OAI: oai:DiVA.org:liu-160959DiVA, id: diva2:1361634
Conference
Thirteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2019), Vienna, Austria, June 17-21, 2019
Funder
Swedish Transport AdministrationSwedish Research CouncilAvailable from: 2019-10-16 Created: 2019-10-16 Last updated: 2025-02-18Bibliographically approved
In thesis
1. Data Abstraction and Pattern Identification in Time-series Data
Open this publication in new window or tab >>Data Abstraction and Pattern Identification in Time-series Data
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Data sources such as simulations, sensor networks across many application domains generate large volumes of time-series data which exhibit characteristics that evolve over time. Visual data analysis methods can help us in exploring and understanding the underlying patterns present in time-series data but, due to their ever-increasing size, the visual data analysis process can become complex. Large data sets can be handled using data abstraction techniques by transforming the raw data into a simpler format while, at the same time, preserving significant features that are important for the user. When dealing with time-series data, abstraction techniques should also take into account the underlying temporal characteristics.  

This thesis focuses on different data abstraction and pattern identification methods particularly in the cases of large 1D time-series and 2D spatio-temporal time-series data which exhibit spatiotemporal discontinuity. Based on the dimensionality and characteristics of the data, this thesis proposes a variety of efficient data-adaptive and user-controlled data abstraction methods that transform the raw data into a symbol sequence. The transformation of raw time-series into a symbol sequence can act as input to different sequence analysis methods from data mining and machine learning communities to identify interesting patterns of user behavior.  

In the case of very long duration 1D time-series, locally adaptive and user-controlled data approximation methods were presented to simplify the data, while at the same time retaining the perceptually important features. The simplified data were converted into a symbol sequence and a sketch-based pattern identification was then used to identify patterns in the symbolic data using regular expression based pattern matching. The method was applied to financial time-series and patterns such as head-and-shoulders, double and triple-top patterns were identified using hand drawn sketches in an interactive manner. Through data smoothing, the data approximation step also enables visualization of inherent patterns in the time-series representation while at the same time retaining perceptually important points.  

Very long duration 2D spatio-temporal eye tracking data sets that exhibit spatio-temporal discontinuity was transformed into symbolic data using scalable clustering and hierarchical cluster merging processes, each of which can be parallelized. The raw data is transformed into a symbol sequence with each symbol representing a region of interest in the eye gaze data. The identified regions of interest can also be displayed in a Space-Time Cube (STC) that captures both the temporal and contextual information. Through interactive filtering, zooming and geometric transformation, the STC representation along with linked views enables interactive data exploration. Using different sequence analysis methods, the symbol sequences are analyzed further to identify temporal patterns in the data set. Data collected from air traffic control officers from the domain of Air traffic control were used as application examples to demonstrate the results.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. p. 58
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2030
National Category
Other Engineering and Technologies
Identifiers
urn:nbn:se:liu:diva-162220 (URN)10.3384/diss.diva-162220 (DOI)9789179299651 (ISBN)
Public defence
2019-12-13, Domteatern, Visualiseringscenter C, Kungsgatan 54, 60233 Norrköping, Norrköping, 09:15 (English)
Opponent
Supervisors
Available from: 2019-11-25 Created: 2019-11-25 Last updated: 2025-02-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

ScopusPaperPresentationProceedings

Authority records

Muthumanickam, PrithivirajNordman, AidaLundberg, JonasCooper, Matthew

Search in DiVA

By author/editor
Muthumanickam, PrithivirajNordman, AidaLundberg, JonasCooper, Matthew
By organisation
Media and Information TechnologyFaculty of Science & Engineering
Other Engineering and Technologies

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 711 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf