liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deterministic Trajectory Planning for Non-Holonomic Vehicles Including Road Conditions, Safety and Comfort Factors
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
2019 (English)In: IFAC PAPERSONLINE, ELSEVIER , 2019, Vol. 52, no 5, p. 97-102Conference paper, Published paper (Refereed)
Abstract [en]

Deterministic and real time calculation of safe and comfortable speed profiles is the main topic of this paper. Using vehicle properties and road characteristics, such as friction and road banking, safety limits for rollover and skidding are calculated and applied in the trajectory planning. To satisfy comfort criteria and obtain smooth speed profiles, jerk and acceleration of the vehicle are limited in the speed planning algorithm. For speed planner, an A* based search method is used to calculate a speed profile corresponding to shortest traveling time. In order to avoid stationary and moving obstacles, decoupled prioritized planning is used. A physical model is used to define the behavior of the vehicle in the speed planner, where jerk is main parameter for speed planner. The physical model enables the algorithm to take into account the safety and comfort limitations. The results attained from the search method are compared with optimal solutions in different test scenarios and the comparisons show the properties of the algorithm. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Place, publisher, year, edition, pages
ELSEVIER , 2019. Vol. 52, no 5, p. 97-102
Keywords [en]
Autonomous Vehicles; Trajectory planning; Safety; Rollover; Skid; Banked roads
National Category
Infrastructure Engineering
Identifiers
URN: urn:nbn:se:liu:diva-161217DOI: 10.1016/j.ifacol.2019.09.016ISI: 000486629500017OAI: oai:DiVA.org:liu-161217DiVA, id: diva2:1365649
Conference
9th IFAC International Symposium on Advances in Automotive Control (AAC)
Available from: 2019-10-25 Created: 2019-10-25 Last updated: 2019-10-25

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Morsali, MahdiFrisk, ErikÅslund, Jan
By organisation
Vehicular SystemsFaculty of Science & Engineering
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf