liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications
Chinese Acad Sci, Peoples R China; Univ Chinese Acad Sci, Peoples R China.
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
Chinese Acad Sci, Peoples R China.
Show others and affiliations
2019 (English)In: NATURE ENERGY, ISSN 2058-7546, Vol. 4, no 9, p. 768-775Article in journal (Refereed) Published
Abstract [en]

Organic photovoltaic cells are potential candidates to drive low power consumption off-grid electronics for indoor applications. However, their power conversion efficiency is still limited by relatively large losses in the open-circuit voltage and a non-optimal absorption spectrum for indoor illumination. Here, we carefully designed a non-fullerene acceptor named IO-4CI and blend it with a polymer donor named PBDB-TF to obtain a photoactive layer whose absorption spectrum matches that of indoor light sources. The photovoltaic characterizations reveal a low energy loss below 0.60 eV. As a result, the organic photovoltaic cell (1 cm(2)) shows a power conversion efficiency of 26.1% with an open-circuit voltage of 1.10 V under a light-emitting diode illumination of 1,000 lux (2,700 K). We also fabricated a large-area cell (4 cm(2)) through the blade-coating method. Our cell shows an excellent stability, maintaining its initial photovoltaic performance under continuous illumination of the indoor light source for 1,000 hours.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP , 2019. Vol. 4, no 9, p. 768-775
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:liu:diva-161197DOI: 10.1038/s41560-019-0448-5ISI: 000486098400011OAI: oai:DiVA.org:liu-161197DiVA, id: diva2:1365681
Note

Funding Agencies|National Natural Science Foundation of ChinaNational Natural Science Foundation of China [51673201, 91633301]; Beijing National 434 Laboratory for Molecular Sciences [BNLMS-CXXM-201903]; Chinese Academy of SciencesChinese Academy of Sciences [XDB12030200]; Swedish Research Council VRSwedish Research Council [2018-06048]; Swedish Energy Agency EnergimyndighetenSwedish Energy Agency [2016-010174]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]

Available from: 2019-10-25 Created: 2019-10-25 Last updated: 2020-10-09
In thesis
1. Voltage Losses in Non-fullerene Organic Solar Cells
Open this publication in new window or tab >>Voltage Losses in Non-fullerene Organic Solar Cells
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Non-fullerene acceptors have significantly boosted the efficiencies of organic solar cells (OSCs) in the past few years. State-of-the-art OSCs have achieved a certificated power conversion efficiency of 17.4%. In spite of significant professes, there is still a gap between efficiencies of OSCs and those of traditional inorganic solar cells and emerging perovskite solar cells. One of the important reasons for this gap is the large voltage losses for OSCs. Understanding and reducing the voltage losses is of critical importance for further improving the performance of the OSCs. This thesis studies the voltage losses of OSCs based on non-fullerene acceptors.

The charge transfer (CT) state plays a critical role in the open-circuit voltage (VOC) of the OSCs. According to the reciprocity relation between the electroluminescence (EL) and the external quantum efficiency of solar cells (EQEPV), we know that the sub-bandgap absorbance (responsible for large radiative recombination voltage losses) and the weak emission of CT states (responsible for large non-radiative voltage losses) are the reasons for large voltage losses in fullerene-based OSCs. In addition, the driving force, defined as the difference between the energy of the singlet states and CT states, was considered to be essential for efficient charge generation, especially when the OSC field was dominated by fullerene acceptors. A series of polymer: non-fullerene pairs with different driving forces were studied by spectroscopy methods e.g. Fourier-transfer photocurrent spectroscopy (FTPS) and electroluminescence spectroscopy. It was demonstrated that both radiative recombination voltage loss and the non-radiative energy loss can be suppressed by reducing driving forces, resulting in overall decreased voltage losses of the OSCs.

Another question regarding the trade-off between the voltage losses and charge generation is still under debate – is the driving force essential for the efficient charge separation? A novel polymer: non-fullerene system with negligible offsets between both the lowest unoccupied molecular orbital (LUMO) and the highest unoccupied molecular orbital (HOMO) of the donor and acceptor was studied. Although the driving force for the new system is small, it works efficiently. It implies that efficient charge generation can occur with negligible driving forces for both electrons and holes, suggesting that the high VOC and efficient charge generation can be achieved at the same time for non-fullerene OSCs.

In addition to binary OSCs, the voltage losses in ternary OSCs are also studied in this thesis. It was found that the VOC of the ternary organic solar cells cannot be well interpreted by the widely used alloy or parallel model. The non-radiative voltage loss, which is not paid much attention in the two models, was found to play an important role in the tunable VOC of the ternary OSCs. We demonstrate that the non-radiative voltage losses in ternary OSCs is dependent on the radiative recombination rates and the energy levels of the CT states of the two constituting binary OSCs. Furthermore, the aggregation of the individual components can be decreased by adding the third component, suppressing the aggregation caused quenching and leading to a reduced non-radiative recombination voltage loss.

The non-fullerene based OSCs with small voltage losses show great potential for indoor applications. Although it might be difficult for OSCs to compete with commercial silicon solar cells for harvesting the solar energy, we demonstrate highly efficient and stable non-fullerene OSCs under indoor light, providing a unique application possibility where OSCs can out-compete other photovoltaic technologies. For the indoor application, the OSCs takes advantage of the easily tunable absorption range of the organic semiconductors, and avoids their drawbacks of the instability under strong outdoor light containing ultraviolet light.

Abstract [sv]

Organiska solceller (OSC) har väckt mycket uppmärksamhet tack vare dess unika egenskaper såsom hög flexibilitet, låg vikt, möjlighet till lösningsmedelsbearbetning i skalbar rulle-till-rulle teknik samt stor ett stort urval av aktiva material. Dessa egenskaper ger OSC stora fördelar i applikationsområden såsom bärbar elektronik och arkitektur. Tillverkning via rulle-till-rulle teknik möjliggör en minskad energiförbrukning samt ett minskat utsläpp av koldioxid och diverse föroreningar. Via organisk syntes kan halvledarens egenskaper, primärt bandgapet, lätt ändras vilket gör OSC till konkurrenskraftiga kandidater även för inomhusapplikation.

Trots att OSC:s effektivitet har uppnåt 17,4% till följd av den snabba utvecklingen inom fältet, finns det fortfarande gott om utrymme för förbättringar av tekniken för att brygga effektivitetsgapet till traditionella oorganiska eller de nya perovskitbaserade solcellerna.

Solcellernas effektivitet bestäms av kortslutningsströmmen (JSC), fyllnadsfaktor (FF) samt öppenkretsspänning (VOC). Det huvudsakliga skälet till OSC:s låga effektivitet i förhållande till andra typer av solceller är den stora skillnaden mellan bandgapet och VOC, vilket ger upphov till en stor förlust av elektrisk spänning. Därför är det oerhört viktigt att förstå vilka faktorer som ger upphov till denna skillnad i syfte att minska spänningsförlusten.

Under de senaste åren har man visat att icke-fullerenbaserade OSC har en minskad spänningsförlust jämfört med de klassiska fullerenerna vilket banar en lovande väg för att öka OSC:s effektivitet. I denna avhandling utförs fundamentala studier rörande spänningsförlusten i nya icke-fullerenbaserade OSC. Forskningsresultaten i avhandlingen strävar att förbättra förståelsen för spänningsförlusten hos OSC: er vilket är ett fundament för att framställa nya OSC med förbättrade egenskaper och prestanda.  

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2020. p. 55
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2088
National Category
Other Physics Topics Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-170309 (URN)9789179298104 (ISBN)
Public defence
2020-10-29, Planck, F-Building, Campus Valla, Linköping, 09:15 (English)
Opponent
Supervisors
Available from: 2020-10-09 Created: 2020-10-09 Last updated: 2020-10-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Wang, YumingBergqvist, JonasInganäs, OlleGao, Feng
By organisation
Biomolecular and Organic ElectronicsFaculty of Science & Engineering
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 413 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf