liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Corneal Stromal Regeneration: Current Status and Future Therapeutic Potential
Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Ophthalmology in Linköping. Sorlandet Hosp Arendal, Norway.ORCID iD: 0000-0003-1079-4361
2019 (English)In: Current Eye Research, ISSN 0271-3683, E-ISSN 1460-2202Article in journal (Refereed) Epub ahead of print
Abstract [en]

The corneal stroma comprises 90% of the corneal thickness and is critical for the corneas transparency and refractive function necessary for vision. When the corneal stroma is altered by disease, injury, or scarring, however, an irreversible loss of transparency can occur. Corneal stromal pathology is the cause of millions of cases of blindness globally, and although corneal transplantation is the standard therapy, a severe global deficit of donor corneal tissue and eye banking infrastructure exists, and is unable to meet the overwhelming need. An alternative approach is to harness the endogenous regenerative ability of the corneal stroma, which exhibits self-renewal of the collagenous extracellular matrix under appropriate conditions. To mimic endogenous stromal regeneration, however, is a challenge. Unlike the corneal epithelium and endothelium, the corneal stroma is an exquisitely organized extracellular matrix containing stromal cells, proteoglycans and corneal nerves that is difficult to recapitulate in vitro. Nevertheless, much progress has recently been made in developing stromal equivalents, and in this review the most recent approaches to stromal regeneration therapy are described and discussed. Novel approaches for stromal regeneration include human or animal corneal and/or non-corneal tissue that is acellular or is decellularized and/or re-cellularized, acellular bioengineered stromal scaffolds, tissue adhesives, 3D bioprinting and stromal stem cell therapy. This review highlights the techniques and advances that have achieved first clinical use or are close to translation for eventual therapeutic application in repairing and regenerating the corneal stroma, while the potential of these novel therapies for achieving effective stromal regeneration is discussed.

Place, publisher, year, edition, pages
TAYLOR & FRANCIS INC , 2019.
Keywords [en]
Corneal stroma; stromal regeneration; bioengineered cornea; acellular porcine cornea; stromal stem cells; 3D bioprinting
National Category
Cell and Molecular Biology
Identifiers
URN: urn:nbn:se:liu:diva-161141DOI: 10.1080/02713683.2019.1663874ISI: 000487056400001PubMedID: 31537127OAI: oai:DiVA.org:liu-161141DiVA, id: diva2:1365790
Note

Funding Agencies|European CommissionEuropean Commission Joint Research Centre [667400]

Available from: 2019-10-25 Created: 2019-10-25 Last updated: 2019-10-25

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Lagali, Neil
By organisation
Division of Neuro and Inflammation ScienceFaculty of Medicine and Health SciencesDepartment of Ophthalmology in Linköping
In the same journal
Current Eye Research
Cell and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf