liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The relation between primal and dual boundary conditions for hyperbolic systems of equations
Linköping University, Department of Mathematics, Computational Mathematics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-7972-6183
Linköping University, Department of Mathematics, Computational Mathematics. Linköping University, Faculty of Science & Engineering.
2020 (English)In: Journal of Computational Physics, ISSN 0021-9991, E-ISSN 1090-2716, Vol. 401, article id 109032Article in journal (Refereed) Published
Abstract [en]

In this paper we study boundary conditions for linear hyperbolic systems of equations and the corresponding dual problem. In particular, we show that the primal and dual boundary conditions are related by a simple scaling relation. It is also shown that the weak dual problem can be derived directly from the weak primal problem. Based on the continuous analysis, we discretize and perform computations with a high-order finite difference scheme on summation- by-parts form with weak boundary conditions. It is shown that the results obtained in the continuous analysis lead directly to stability results for the primal and dual discrete problems. Numerical experiments corroborate the theoretical results.

Place, publisher, year, edition, pages
Elsevier, 2020. Vol. 401, article id 109032
Keywords [en]
Hyperbolic systems, Boundary conditions, Primal problem, Dual problem, Well-posedness, Dual consistency
National Category
Mathematics
Identifiers
URN: urn:nbn:se:liu:diva-161459DOI: 10.1016/j.jcp.2019.109032ISI: 000501350300043PubMedID: 109032OAI: oai:DiVA.org:liu-161459DiVA, id: diva2:1367169
Available from: 2019-11-01 Created: 2019-11-01 Last updated: 2020-01-02Bibliographically approved
In thesis
1. Stability, dual consistency and conservation of summation-by-parts formulations for multiphysics problems
Open this publication in new window or tab >>Stability, dual consistency and conservation of summation-by-parts formulations for multiphysics problems
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, we consider the numerical solution of initial boundary value problems (IBVPs). Boundary and interface conditions are derived such that the IBVP under consideration is well-posed. We also study the dual problem and the related dual boundary/interface conditions. Once the continuous problem is analyzed, we use finite difference operators with the Summation- By-Parts property (SBP) and a weak boundary/interface treatment using the Simultaneous-Approximation-Terms (SAT) technique to construct high-order accurate numerical schemes. We focus in particular on stability, conservation and dual consistency. The energy method is used as our main analysis tool for both the continuous and numerical problems.

The contributions of this thesis can be divided into two parts. The first part focuses on the coupling of different IBVPs. Interface conditions are derived such that the continuous problem satisfy an energy estimate and such that the discrete problem is stable. In the first paper, two hyperbolic systems of different size posed on two domains are considered. We derive the dual problem and dual interface conditions. It is also shown that a specific choice of penalty matrices leads to dual consistency. As an application, we study the coupling of the Euler and wave equations. In the fourth paper, we examine how to couple the compressible and incompressible Navier-Stokes equations. In order to obtain a sufficient number of interface conditions, the decoupled heat equation is added to the incompressible equations. The interface conditions include mass and momentum balance and two variants of heat transfer. The typical application in this case is the atmosphere-ocean coupling.

The second part of the thesis focuses on the relation between the primal and dual problem and the relation between dual consistency and conservation. In the second and third paper, we show that dual consistency and conservation are equivalent concepts for linear hyperbolic conservation laws. We also show that these concepts are equivalent for symmetric or symmetrizable parabolic problems in the fifth contribution. The relation between the primal and dual boundary conditions for linear hyperbolic systems of equations is investigated in the sixth and last paper. It is shown that for given well-posed primal/dual boundary conditions, the corresponding well-posed dual/primal boundary conditions can be obtained by a simple scaling operation. It is also shown how one can proceed directly from the well-posed weak primal problem to the well-posed weak dual problem.  

Abstract [sv]

Den här avhandlingen handlar om numeriska metoder för att lösa initial och randvärdes problem. Studien fokuserar på härledningen av rand/kopplingsvillkor som garanterar välställdhet. Det duala problemet och dess duala rand/kopplingsvillkor studeras också. Dessa problem diskretiseras genom att använda noggranna finita differensscheman på SBP-form (eng. summation-by-parts), kombinerat med en svag randbehandling benämnd SAT (eng. simultaneous approximation term). Vi fokuserar särskilt på stabilitet, konservation och dualkonsistens. Det främsta analysverktyget för både det kontinuerliga och diskreta problemet är energimetoden.

Den första delen av avhandlingen behandlar välställdhet och stabilitet för koppling av olika system av ekvationer. Kopplingsvillkoren är härledda så att det kontinuerliga problemet uppfyller en energiuppskattning och så att det diskreta problemet är stabilt. I den första artikeln görs analysen för koppling av två olika hyperboliska system på första ordningens form. Som tillämpning kopplar vi Euler och vågekvationerna. Koppling mellan kompressibla och inkompressibla Navier-Stokes ekvationer studeras i den fjärde artikeln. För att få rätt antal kopplingsvillkor lägger vi till värmeledningsekvationen till de inkompressibla ekvationerna. Kopplingsvillkoren innefattar massans och rörelsemängdens bevarande samt två varianter av värmeöverföring. Den typiska tillämpningen är koppling mellan atmosfär och hav.

Den andra delen av avhandlingen fokuserar på relationen mellan det primära och duala problemet och relationen mellan dualkonsistens och konservation. I den andra och tredje artikeln visar vi att dualkonsistens och konservation är ekvivalenta koncept för linjära hyperboliska konserveringslagar. I den femte artikeln, visas att dessa koncept är ekvivalenta även för paraboliska problem. Relationen mellan de primära och duala randvilkoren för linjära hyperboliska system av ekvationer i två dimensioner studeras i den sista artikeln. Vi visar att primära/duala välställda randvilkor ger duala/primära välställda randvilkor genom en enkel skalningsoperation. Det visas också att man kan gå direkt från det välställda svaga primära problemet till det välställda svaga duala problemet.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. p. 27
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1998
National Category
Computational Mathematics
Identifiers
urn:nbn:se:liu:diva-159189 (URN)10.3384/diss.diva-159189 (DOI)9789176850312 (ISBN)
Public defence
2019-09-13, Ada Lovelace, B-huset, Campus Valla, Linköping, 13:15 (English)
Opponent
Supervisors
Available from: 2019-08-02 Created: 2019-08-01 Last updated: 2019-11-01Bibliographically approved

Open Access in DiVA

fulltext(610 kB)284 downloads
File information
File name FULLTEXT01.pdfFile size 610 kBChecksum SHA-512
dcc41561fbc9f67841a8a04b1bcbf33c88a11a5aa1cff304e36607a20ba37bba914b7de033309e9a866d2c0f9590dd2c526bd717599f9eaf0c1628cb34f7b9c7
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Authority records

Nordström, JanGhasemi, Fatemeh

Search in DiVA

By author/editor
Nordström, JanGhasemi, Fatemeh
By organisation
Computational MathematicsFaculty of Science & Engineering
In the same journal
Journal of Computational Physics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 284 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 149 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf