liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Twinning Lignosulfonate with a Conducting Polymer via Counter-Ion Exchange for Large-Scale Electrical Storage
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Faculty of Science & Engineering. Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Department of Physics, Chemistry and Biology.ORCID iD: 0000-0001-8478-4663
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-2930-676X
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
Show others and affiliations
2019 (English)In: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 3, no 9, article id 1900039Article in journal (Refereed) Published
Abstract [en]

Abstract Lignosulfonate (LS) is a large-scale surplus product of the forest and paper industries, and has primarily been utilized as a low-cost plasticizer in making concrete for the construction industry. LS is an anionic redox-active polyelectrolyte and is a promising candidate to boost the charge capacity of the positive electrode (positrode) in redox-supercapacitors. Here, the physical-chemical investigation of how this biopolymer incorporates into the conducting polymer PEDOT matrix, of the positrode, by means of counter-ion exchange is reported. Upon successful incorporation, an optimal access to redox moieties is achieved, which provides a 63% increase of the resulting stored electrical charge by reversible redox interconversion. The effects of pH, ionic strength, and concentrations, of included components, on the polymer?polymer interactions are optimized to exploit the biopolymer-associated redox currents. Further, the explored LS-conducting polymer incorporation strategy, via aqueous synthesis, is evaluated in an up-scaling effort toward large-scale electrical energy storage technology. By using an up-scaled production protocol, integration of the biopolymer within the conducting polymer matrix by counter-ion exchange is confirmed and the PEDOT-LS synthesized through optimized strategy reaches an improved charge capacity of 44.6 mAh g?1.

Place, publisher, year, edition, pages
John Wiley & Sons, 2019. Vol. 3, no 9, article id 1900039
Keywords [en]
charge storage, conducting polymers, ion-exchange, lignin
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:liu:diva-161646DOI: 10.1002/adsu.201900039ISI: 000486210400005Scopus ID: 2-s2.0-85072220289OAI: oai:DiVA.org:liu-161646DiVA, id: diva2:1367743
Available from: 2019-11-05 Created: 2019-11-05 Last updated: 2019-11-11Bibliographically approved
In thesis
1. Electrochemical Reactions of Quinones at Conducting Polymer Electrodes
Open this publication in new window or tab >>Electrochemical Reactions of Quinones at Conducting Polymer Electrodes
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Proton-coupled multielectron transfer reactions are of great abundance in Nature. In particular, two-proton-two-electron transfers in quinone/hydroquinone redox couples are behind oxidative phosphorylation (ADP-to-ATP) and photosystem II. The redox processes of neurotransmitters, as a platform for brain activity read-out, are two-proton two-electron transfers of quinones. Moreover, humic acids, which constitute a major organic fraction of soil, turf, coal, and lignin, which forms as a large-scale surplus product from forest and paper industry, contain a large quantity of polyphenols, which can undergo the exchange of two electrons per aromatic ring accompanied with transfers of two protons. This makes polyphenol-based biopolymers, such as lignin, promising green-chemistry renewable materials for electrical energy storage or generation. The application of intact or depolymerized polyphenols in electrical energy devices such as fuel cells and redox flow batteries requires appropriate electrode materials to ensure efficient proton-coupled electron transfer reactions occurring at the solid-liquid interface. Moreover, investigation of the biological quinones reaction calls for porous, soft, biocompatible materials as implantable devices to reduce the rejection reaction and pain.

At common electrode materials such as platinum and carbons, quinone/hydroquinone redox processes are rather irreversible; in addition, platinum is very costly. Conducting polymers (CPs), poly(3,4-ethylenedioxythiophene) (PEDOT) in particular, offer an attractive option as metal-free electrode material for these reactions due to their molecular porosity, high electrical and ionic conductivity, solution processability, resistance to acid media, as well as high atomic abundance of their constituents.

This thesis explores the possibility of utilizing CPs as electrode materials for driving various quinone redox reactions. Firstly, we studied the electrocatalytic activity and mechanism of PEDOTs for the generic hydroquinone reaction and their application in a fuel cell. Secondly, the mechanism of integrating lignosulfonate (LS) into CP matrices and optimization strategies were explored in order to boost energy storage capacity. Thirdly, we attained mechanistic understanding of the influence of ionic transport and proton management on the thermodynamics and kinetics of the electrocatalysis on CPs, thereby providing steps towards the design of quinone-based electrical energy storage devices, such as organic redox flow batteries (ORFB).

Abstract [sv]

Proton-kopplade multielektronöverföringsreaktioner är vanligt förekommande i naturen. Exempelvis ligger två-proton-två-elektronöverföringar i kinon/hydrokinon-redoxpar bakom oxidativ fosforylering (ADP-till-ATP) och fotosystem II. Redoxprocesserna för neurotransmittorer, som en plattform för avläsning av hjärnaktivitet, är två-proton tvåelektronöverföringar av kinoner. Dessutom innehåller huminsyror, som utgör en stor organisk fraktion av mark, torv och kol och lignin, och som också är en överskottsprodukt från skogs- och pappersindustrin, en stor mängd polyefenoler, som kan genomgå utbyte av två elektroner per aromatisk ring åtföljt av överföringar av två protoner. Detta gör polyfenolbaserade biopolymerer, såsom lignin, lovande som förnybara material för lagring eller produktion av elektrisk energi. Applicering av intakta eller depolymeriserade polyfenoler i elektriska energianordningar såsom bränsleceller och redoxflödesbatterier kräver lämpliga elektrodmaterial för att säkerställa effektiva protonkopplade elektronöverföringsreaktioner som sker vid gränsytan mot vätska.

Vid vanliga elektrodmaterial, såsom platina och kol, är kinon / hydrokinon-redox-processer i stort sett irreversibla; dessutom är platina mycket kostsamt. Ledande polymerer (CP, akronymer på engelska), och särskilt poly (3,4-etylendioxytiofen) (PEDOT) erbjuder ett attraktivt alternativ som metallfritt elektrodmaterial för dessa reaktioner på grund av deras molekylära porositet, höga elektriska och joniska ledningsförmåga, processerbarhet i lösningsform, motståndskraft mot syror, samt överflöd av deras beståndsdelar.

I denna avhandling undersöks möjligheten att använda CP som elektrodmaterial för att driva olika kinonredoxreaktioner. För det första studerar vi den elektrokatalytiska aktiviteten och mekanismen för PEDOT mot den generiska hydrokinonreaktionen och dess tillämpning i en bränslecell. För det andra undersöks mekanismen för lignosulfonat (LS) -integration i CPmatris och optimeringsstrategier för att öka energilagringskapaciteten. För det tredje uppnådde vi mekanistisk förståelse för jontransportens och protonhanteringens effekter på termodynamiken och kinetiken för elektrokatalys på CP, vilket är värdefullt för design av kinonbaserade enheter för lagring av elektrisk energi, till exempel organiska redoxflödesbatterier (ORFB).

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2019. p. 77
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2033
National Category
Other Chemical Engineering
Identifiers
urn:nbn:se:liu:diva-161645 (URN)10.3384/diss.diva-161645 (DOI)9789179299583 (ISBN)
Public defence
2019-11-29, K3, Kåkenhus, Campus Norrköping, 10:00 (English)
Opponent
Supervisors
Available from: 2019-11-05 Created: 2019-11-05 Last updated: 2019-11-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Vagin, MikhailAil, UjwalaGueskine, ViktorPhopase, JaywantBrooke, RobertJonsson, Magnus P.Mak, Wing CheungBerggren, MagnusCrispin, Xavier

Search in DiVA

By author/editor
Che, CanyanVagin, MikhailAil, UjwalaGueskine, ViktorPhopase, JaywantBrooke, RobertGabrielsson, RogerJonsson, Magnus P.Mak, Wing CheungBerggren, MagnusCrispin, Xavier
By organisation
Laboratory of Organic ElectronicsFaculty of Science & EngineeringDepartment of Physics, Chemistry and BiologySensor and Actuator Systems
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf