liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A review of the intrinsic ductility and toughness of hard transition-metal nitride alloy thin films
Univ Calif Los Angeles, CA 90095 USA.
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. Ruhr Univ Bochum, Germany.ORCID iD: 0000-0002-1379-6656
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Univ Illinois, IL 61801 USA; Natl Taiwan Univ Sci and Technol, Taiwan.
Show others and affiliations
2019 (English)In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 688, article id 137479Article, review/survey (Refereed) Published
Abstract [en]

Over the past decades, enormous effort has been dedicated to enhancing the hardness of refractory ceramic materials. Typically, however, an increase in hardness is accompanied by an increase in brittleness, which can result in intergranular decohesion when materials are exposed to high stresses. In order to avoid brittle failure, in addition to providing high strength, films should also be ductile, i.e., tough. However, fundamental progress in obtaining hard-yet-ductile ceramics has been slow since most toughening approaches are based on empirical trial-and-error methods focusing on increasing the strength and ductility extrinsically, with a limited focus on understanding thin-film toughness as an inherent physical property of the material. Thus, electronic structure investigations focusing on the origins of ductility vs. brittleness are essential in understanding the physics behind obtaining both high strength and high plastic strain in ceramics films. Here, we review recent progress in experimental validation of density functional theory predictions on toughness enhancement in hard ceramic films, by increasing the valence electron concentration, using examples from the V1-xWxN and V1-xMoxN alloy systems.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE SA , 2019. Vol. 688, article id 137479
National Category
Other Materials Engineering
Identifiers
URN: urn:nbn:se:liu:diva-160970DOI: 10.1016/j.tsf.2019.137479ISI: 000485256500002OAI: oai:DiVA.org:liu-160970DiVA, id: diva2:1370246
Note

Funding Agencies|Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation [KAW 2011-0094]; Swedish Research CouncilSwedish Research Council [VR 2014-5790]; Swedish Government Strategic Research Area Grant in Materials Science (SFO Mat-LiU) on Advanced Functional Materials; Olle Engkvist Foundation; VINN Excellence Center Functional Nanoscale Materials (FunMat-2) Grant [2016-05156]

Available from: 2019-11-14 Created: 2019-11-14 Last updated: 2019-11-14

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Sangiovanni, DavidePetrov, IvanGreene, Joseph EHultman, Lars
By organisation
Theoretical PhysicsFaculty of Science & EngineeringThin Film Physics
In the same journal
Thin Solid Films
Other Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf