liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A path planning and path-following control framework for a general 2-trailer with a car-like tractor
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
Embark Trucks Inc, CA USA.
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0001-6957-2603
Scania CV, Sweden.
Show others and affiliations
2019 (English)In: Journal of Field Robotics, ISSN 1556-4959, E-ISSN 1556-4967Article in journal (Refereed) Epub ahead of print
Abstract [en]

Maneuvering a general 2-trailer with a car-like tractor in backward motion is a task that requires a significant skill to master and is unarguably one of the most complicated tasks a truck driver has to perform. This paper presents a path planning and path-following control solution that can be used to automatically plan and execute difficult parking and obstacle avoidance maneuvers by combining backward and forward motion. A lattice-based path planning framework is developed in order to generate kinematically feasible and collision-free paths and a path-following controller is designed to stabilize the lateral and angular path-following error states during path execution. To estimate the vehicle state needed for control, a nonlinear observer is developed, which only utilizes information from sensors that are mounted on the car-like tractor, making the system independent of additional trailer sensors. The proposed path-planning and path-following control framework is implemented on a full-scale test vehicle and results from simulations and real-world experiments are presented.

Place, publisher, year, edition, pages
WILEY , 2019.
National Category
Robotics
Identifiers
URN: urn:nbn:se:liu:diva-161845DOI: 10.1002/rob.21908ISI: 000492389900001OAI: oai:DiVA.org:liu-161845DiVA, id: diva2:1370788
Note

Funding Agencies|Strategic vehicle research and innovation programme (FFI); Scania CV [2017-01957]

Available from: 2019-11-18 Created: 2019-11-18 Last updated: 2019-11-18

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Ljungqvist, OskarAxehill, Daniel
By organisation
Automatic ControlFaculty of Science & Engineering
In the same journal
Journal of Field Robotics
Robotics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf