liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Prediction of Treatment Outcome in Psychotherapy by Patient Initial Symptom Distress Profiles
Linköping University, Department of Behavioural Sciences and Learning. Linköping University, Faculty of Arts and Sciences.
Stockholm Univ, Sweden.
Linköping University, Department of Behavioural Sciences and Learning, Psychology. Linköping University, Faculty of Arts and Sciences.ORCID iD: 0000-0003-2093-2510
Linköping University, Department of Behavioural Sciences and Learning, Psychology. Linköping University, Faculty of Arts and Sciences.
2019 (English)In: Journal of counseling psychology, ISSN 0022-0167, E-ISSN 1939-2168, Vol. 66, no 6, p. 736-746Article in journal (Refereed) Published
Abstract [en]

Understanding how different groups of patients change at different rates is important for treatment selection, planning and evaluation. This study aimed to assess whether an approach to classifying patients on the basis of initial symptom distress profiles (ISDPs) derived from a self-rated questionnaire measuring psychological distress may be useful in predicting treatment response. The Clinical Outcome in Routine Evaluation-Outcome Measure were collected from 1,095 first line mental health service patients (M [SD] age = 37.3 [14.3] years; 74% female) prior to every session. Latent profile analysis was performed on the questionnaires from the first session to classify participants into subtypes, which were then used to predict change rates. The best-fitting model identified 4 ISDP subtypes with significantly different treatment responses. Profile 1 predicted very slow change rate and indicated low initial distress coupled with low deviations among problem areas. Profile 2 predicted slow change rate with average initial distress and low emphasis on questions relating to risk of harming oneself and/or others. Profile 3 predicted fast improvement rate and showed high initial distress combined with low emphasis on the risk area. Profile 4 predicted moderate change rate and displayed very high initial distress accompanied with more emphasis on the risk area. Findings support the potential utility of ISDP subtypes to predict treatment response, suggesting that intake data that is easily collected by the clinician contain reliable information about treatment prognosis. The study is exploratory and needs to be replicated before stable conclusions can be drawn.

Place, publisher, year, edition, pages
AMER PSYCHOLOGICAL ASSOC , 2019. Vol. 66, no 6, p. 736-746
Keywords [en]
counseling; psychotherapy; patient-focused research; latent profile analysis; prediction
National Category
Applied Psychology
Identifiers
URN: urn:nbn:se:liu:diva-161833DOI: 10.1037/cou0000345ISI: 000492782700008PubMedID: 30998051OAI: oai:DiVA.org:liu-161833DiVA, id: diva2:1370910
Note

Funding Agencies|Vastra Gotalandsregionen, Kungalvs sjukhus; Forskningsradet for halsa, arbetsliv och valfard (FORTE) [2012-0238]

Available from: 2019-11-18 Created: 2019-11-18 Last updated: 2021-01-21
In thesis
1. Looking into the Future: How to Use Advanced Statistical Methods for Predicting Psychotherapy Outcomes in Routine Care
Open this publication in new window or tab >>Looking into the Future: How to Use Advanced Statistical Methods for Predicting Psychotherapy Outcomes in Routine Care
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Att se in i framtiden : Hur avancerade statistiska metoder kan användas för att predicera psykoterapiutfall inom rutinmässig vård
Abstract [en]

Psychotherapy research has shifted from mainly focusing on the average effects of different treatments to concentrating more on questions related to the individual patient. When research attention shifts, it can give rise to the implementation of new statistical methods that, in turn, can illuminate new challenges that must be addressed.

The aim of the thesis was to study how traditional methods for predicting certain psychotherapy outcomes have been conducted in the past, and how more advanced statistical methods might be used to enhance knowledge of how to predict these outcomes today.

Three studies were performed: Paper I focused on how Multi Level Modeling (MLM) can be used to study certain aspects of the relationship between working alliance and treatment outcome. In Paper II, Latent Profile Analysis (LPA) and item-level analysis were used to give nuance to the relationship between psychological distress at baseline and change rate during treatment. Finally, in Paper III, Machine Learning (ML) was used to detect dropout patients in the early phase of treatment by exploring complex patterns of symptom distress during the early phase of treatment.

The thesis showed how different goals of scientific exploration can be studied in the context of routine care with the use of these statistical frameworks and discussed some of the challenges and opportunities worth noting when entering this line of research. 

Abstract [sv]

Psykoterapiforskning har på senare tid gått från att fokusera på genomsnittliga effekter av olika behandlingsinriktningar, till att inrikta sig mer mot den enskilda patienten. När fokus förflyttas på det här sättet kan det leda till att nya statistiska metoder behöver tillämpas vilket i sin tur kan leda till nya utmaningar för psykoterapiforskaren.

Syftet med avhandlingen var att undersöka hur traditionella statistiska metoder har använts för att studera olika typer av psykoterapiutfall i rutinmässig vård, och hur mer avancerade statistiska metoder kan tillämpas för att öka kunskapen om hur dessa utfall kan prediceras.

Tre studier genomfördes. Studie I fokuserade på hur flernivåanalys kan användas för att studera relationen mellan arbetsallians och behandlingsutfall. I studie II användes latent profilanalys för att studera sambandet mellan psykologiska besvär vid det första besöket och symptomförändring under behandlingens gång. Slutligen, I studie III, tillämpades maskininlärning för att upptäcka patienter med risk att hoppa av behandlingen i förtid.

Sammanfattningsvis belystes i avhandlingen hur olika typer av vetenskapliga frågeställningar kan studeras i en klinisk kontext med hjälp av dessa statistiska ramverk samt några av de fördelar och begräsningar som är viktiga att notera när de tillämpas.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2021. p. 70
Series
Linköping Studies in Arts and Sciences, ISSN 0282-9800 ; 803Linköping Studies in Behavioural Science, ISSN 1654-2029 ; 226
Keywords
Statistics, Machine learning, Multilevel modeling, Latent profile analysis, Prediction, Psychotherapy, Routine care, Outcome, Statistik, Maskininlärning, Latent profilanalys, Flernivåanalys, Prediktion, Psykoterapi, Rutinmässig vård, Utfall
National Category
Applied Psychology
Identifiers
urn:nbn:se:liu:diva-172754 (URN)10.3384/diss.diva-172754 (DOI)9789179297091 (ISBN)
Public defence
2021-02-26, Online through Zoom (contact britt-marie.alfredsson@liu.se) and TEMCAS, Building T, Campus Valla, Linköping, 13:00 (English)
Opponent
Supervisors
Note

Funding agencies: Västra Götalandsregionen, Kungälvs sjukhus and Forskningsrådet för Hälsa, Arbetsliv och Välfärd (FORTE)

Numbering within the first series is incorrect on cover. Correct number is 803.

Available from: 2021-01-21 Created: 2021-01-21 Last updated: 2021-02-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Uckelstam, Carl-JohanHolmqvist, RolfFalkenström, Fredrik
By organisation
Department of Behavioural Sciences and LearningFaculty of Arts and SciencesPsychology
In the same journal
Journal of counseling psychology
Applied Psychology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 285 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf