liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimal second-order regularity for the p-Laplace system
Univ Firenze, Italy.
Linköping University, Department of Mathematics, Mathematics and Applied Mathematics. Linköping University, Faculty of Science & Engineering. RUDN Univ, Russia.
2019 (English)In: Journal des Mathématiques Pures et Appliquées, ISSN 0021-7824, E-ISSN 1776-3371, Vol. 132, p. 41-78Article in journal (Refereed) Published
Abstract [en]

Second-order estimates are established for solutions to the p-Laplace system with right-hand side in L-2. The nonlinear expression of the gradient under the divergence operator is shown to belong to W-1,W-2, and hence to enjoy the best possible degree of regularity. Moreover, its norm in 1471,2 is proved to be equivalent to the norm of the right-hand side in L-2. Our global results apply to solutions to both Dirichlet and Neumann problems, and entail minimal regularity of the boundary of the domain. In particular, our conclusions hold for arbitrary bounded convex domains. Local estimates for local solutions are provided as well. (C) 2019 Elsevier Masson SAS. All rights reserved.

Place, publisher, year, edition, pages
ELSEVIER , 2019. Vol. 132, p. 41-78
Keywords [en]
Quasilinear elliptic systems; Second-order derivatives; Dirichlet problems; Neumann problems; Capacity; Convex domains
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:liu:diva-162882DOI: 10.1016/j.matpur.2019.02.015ISI: 000500376300003OAI: oai:DiVA.org:liu-162882DiVA, id: diva2:1382239
Note

Funding Agencies|Italian Ministry of University and Research (MIUR)Ministero dell Istruzione, dell Universita e della Ricerca (MIUR) [2012TC7588]; GNAMPA of the Italian INdAM -National Institute of High Mathematics; RUDN University Program [5-100]

Available from: 2020-01-02 Created: 2020-01-02 Last updated: 2020-01-02

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Mazya, Vladimir
By organisation
Mathematics and Applied MathematicsFaculty of Science & Engineering
In the same journal
Journal des Mathématiques Pures et Appliquées
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf