liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Quantum Mechanics/Molecular Mechanics Density Functional Theory Simulations of the Optical Properties Fingerprinting the Ligand-Binding of Pentameric Formyl Thiophene Acetic Acid in Amyloid-β(1–42)
KTH Royal Inst Technol, Sweden.
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering. KTH Royal Inst Technol, Sweden.
KTH Royal Inst Technol, Sweden.
2020 (English)In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 124, no 5, p. 875-888Article in journal (Refereed) Published
Abstract [en]

The binding pocket proposed by Konig et al. [Chem. Commun. 2018, 54, 3030-3033] for the biomarker pentameric formyl thiophene acetic acid (p-FTAA) in the fibrillar structure of amyloid-beta(1-42) has been put to the test by the comparison of theoretical and experimental optical absorption and fluorescence spectra obtained in a water environment and inside the protein scaffold. The optical absorption/emission properties of this luminescent conjugated oligothiophene were studied by means of classical force field molecular dynamics simulations to account for the sampling of configuration space in conjunction with polarizable embedding time-dependent density functional theory calculations of spectra. The nuclear motions of residues in the beta-sheet were found to be modest, and the time dependence of embedding parameters was shown to be negligible so that a time-independent parameter set could be derived and used for all 300 snapshots considered in the spectrum averaging. In regard to linear absorption spectra, the calculated red shift due to protein binding for the dominant S-1 amp;lt;- S-0 transition in p-FTAA was found to be equal to 23 nm (0.17 eV), which is in excellent agreement with the corresponding experimental result of 18 nm and taken as corroborating evidence for having correctly identified the binding pocket of p-FTAA in the amyloid. The underlying mechanisms for the calculated red shift were disentangled, and it is shown that some 20 nm (0.15 eV) of the total 23 nm (0.17 eV) is associated with increased planarity of p-FTAA in the binding pocket, whereas a mere 3 nm (0.02 eV) is associated with changes in the environment. In regard to emission spectra, we demonstrate that intersystem crossing from the excited S-1 state to the triplet manifold of states is a less likely event for p-FTAA in the binding pocket as compared to in the aqueous solution, and we thereby partly explain the much higher quantum yield of fluorescence for the more rigid p-FTAA in the binding pocket. Two-photon absorption in p-FTAA is shown to predominantly occur to an overall symmetric excited state and be more than twice as strong for the biomarker in the binding pocket as compared to in water. The corresponding red shift, on the other hand, is very small. Earlier experimental two-photon fluorescence imaging using p-FTAA is shown not to target the dominant two-photon state, and ways to reach a higher image quality (lower signal-to-noise ratio) are proposed in terms of tuning the laser wavelength toward the region of 600 nm or the synthesis of asymmetric ligands with S-1 states that are both one- and two-photon allowed.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2020. Vol. 124, no 5, p. 875-888
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-164036DOI: 10.1021/acs.jpca.9b09779ISI: 000512222100013PubMedID: 31922760Scopus ID: 2-s2.0-85079075961OAI: oai:DiVA.org:liu-164036DiVA, id: diva2:1411782
Note

Funding Agencies|Swedish Research CouncilSwedish Research Council [2018-4343]; Swedish e-Science Research Centre (SeRC)

Available from: 2020-03-04 Created: 2020-03-04 Last updated: 2020-03-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Linares, Mathieu
By organisation
Laboratory of Organic ElectronicsFaculty of Science & Engineering
In the same journal
Journal of Physical Chemistry A
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 63 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf