liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On Dynamics of Jellets Egg. Asymptotic Solutions Revisited
Linköping University, Department of Mathematics, Mathematics and Applied Mathematics. Linköping University, Faculty of Science & Engineering.
Univ Zielona Gora, Poland.
2020 (English)In: Regulârnaâ i haoticeskaâ dinamika, ISSN 1560-3547, E-ISSN 1468-4845, Vol. 25, no 1, p. 40-58Article in journal (Refereed) Published
Abstract [en]

We study here the asymptotic condition. E = -mu gnv2A = 0 for an eccentric rolling and sliding ellipsoid with axes of principal moments of inertia directed along geometric axes of the ellipsoid, a rigid body which we call here Jelletts egg (JE). It is shown by using dynamic equations expressed in terms of Euler angles that the asymptotic condition is satisfied by stationary solutions. There are 4 types of stationary solutions: tumbling, spinning, inclined rolling and rotating on the side solutions. In the generic situation of tumbling solutions concise explicit formulas for stationary angular velocities.. JE(cos.),.3JE(cos.) as functions of JE parameters a, a,. are given. We distinguish the case 1 - a amp;lt; a2 amp;lt; 1+ a, 1 - a amp;lt; a2. amp;lt; 1+ a when velocities.. JE,.3JE are defined for the whole range of inclination angles.. (0, p). Numerical simulations illustrate how, for a JE launched almost vertically with.(0) = 1 100, 1 10, the inversion of the JE depends on relations between parameters.

Place, publisher, year, edition, pages
PLEIADES PUBLISHING INC , 2020. Vol. 25, no 1, p. 40-58
Keywords [en]
rigid body; nonholonomic mechanics; Jellett egg; tippe top
National Category
Control Engineering
Identifiers
URN: urn:nbn:se:liu:diva-164214DOI: 10.1134/S1560354720010062ISI: 000515001300005OAI: oai:DiVA.org:liu-164214DiVA, id: diva2:1413450
Note

Funding Agencies|Department of Mathematics of Linkoping University; Stiftelse Magnusons fond, KVA

Available from: 2020-03-10 Created: 2020-03-10 Last updated: 2020-03-10

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Rauch, Stefan
By organisation
Mathematics and Applied MathematicsFaculty of Science & Engineering
In the same journal
Regulârnaâ i haoticeskaâ dinamika
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 107 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf