liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mixed CoS2@Co3O4 composite material: An efficient nonprecious electrocatalyst for hydrogen evolution reaction
Mehran Univ Engn and Technol, Pakistan.
Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.
Mehran Univ Engn and Technol, Pakistan.
Mehran Univ Engn and Technol, Pakistan.
Show others and affiliations
2020 (English)In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 45, no 27, p. 13805-13813Article in journal (Refereed) Published
Abstract [en]

Hydrogen evolution reaction (HER) has been identified as a sustainable and environment friendly technology for a wide range of energy conversion and storage applications. The big barrier in realizing this green technology requires a highly efficient, earth-abundant, and low-cost electrocatalyst for HER. Various HER catalysts have been designed and reported, still, their performance is not up to the mark of Pt. Among them, cobalt-based, especially cobalt disulfide (CoS2) has shown significant HER activity and found suitable candidature for HER due to its low cost, simple to prepare, and exhibits good stability. Herein, we synthesized various nanostructured materials including pure CoS2, Co3O4 and their composites by wet chemical methods and found them active for HER. The scanning electron microscopy (SEM) has revealed a morphology of composite as a mixture of nanowires and round shape spherical nanoparticles with several microns in dimension. The X-ray diffraction (XRD) confirmed the cubic phase of CoS2 and cubic phase of Co3O4 in the composite materials. The chemical deposition of CoS2 onto Co3O4 has tailored the HER activity of CoS2@Co3O4 composite material. Two CoS2@Co3O4 composite materials were produced with varying amounts of Co3O4 and labeled as samples 1 and 2. The Co3O4 reduced the adsorption energy for hydrogen, decreased the aggregation of CoS2 and uplifted the stability of CoS2@Co3O4 a composite material in alkaline media. Sample 1 requires an overpotential of 320 mV to reach a current density of 10 mA/cm(2) and it exhibits a Tafel slope of 42 mVdec(-1) which is the key indicator for the fast HER kinetics on sample 1. The sample 1 is highly durable for 50 h and also it has excellent stability. The electrochemical impedance spectroscopy (EIS) revealed a small charge transfer resistance of 28.81 Ohms for the sample 1 with high capacitance double-layer value of 0.81 mF. EIS has supported polarization and Tafel slope results. Based on the partial physical characterization and the electrochemical results, the as-obtained sample 1 (CoS2@Co3O4 composite material) will find potential applications in an extended range of energy conversion and storage devices owing to its low cost, high abundance, and excellent efficiency. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE LTD , 2020. Vol. 45, no 27, p. 13805-13813
Keywords [en]
CoS; Co3O4; CoS2@Co3O4 composite material; Hydrogen evolution reaction
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-165922DOI: 10.1016/j.ijhydene.2020.03.131ISI: 000530094600003OAI: oai:DiVA.org:liu-165922DiVA, id: diva2:1435177
Available from: 2020-06-04 Created: 2020-06-04 Last updated: 2020-06-04

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Tahira, Aneela
By organisation
Physics, Electronics and MathematicsFaculty of Science & Engineering
In the same journal
International journal of hydrogen energy
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 179 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf