In abstractions of linear dynamic networks, selected node signals are removed from the network, while keeping the remaining node signals invariant. The topology and link dynamics, or modules, of an abstracted network will generally be changed compared to the original network. Abstractions of dynamic networks can be used to select an appropriate set of node signals that are to be measured, on the basis of which a particular local module can be estimated. A method is introduced for network abstraction that generalizes previously introduced algorithms, as e.g. immersion and the method of indirect inputs. For this abstraction method it is shown under which conditions on the selected signals a particular module will remain invariant. This leads to sets of conditions on selected measured node variables that allow identification of the target module. (C) 2020 Elsevier Ltd. All rights reserved.
Funding Agencies|European Research Council (ERC), Advanced Research Grant SYSDYNET, under the European Unions Horizon 2020 research and innovation programme [694504]; Vinnova Industry Excellence Center LINK-SIC, Sweden [2007-02224]