liu.seSearch for publications in DiVA
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Protein Nanomaterials:: Functionalization, Self-assembly, and Applications
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

As one of the major classes of materials that is relevant to biological function of our daily life, proteins are highly interesting in both biological and material science. Self-assembled protein amyloid nanostructures have been considered not only as aggregates in pathological tissue, but also as a kind of advanced one dimension materials in material science perspective due to their favorable characteristics including high aspect ratio, abundant surface charge groups, high stability, and tunable surface properties. The Protein nanofibrils (PNFs) can be self-assembly derived from a wide range of proteins, which isolated from natural and renewable sources, means it is relative cheap, environmentally friendly, and sustainable. The PNFs will contain additional functionalized properties for further applications by functionalizing with other materials such as fluorophores or conducting materials. An easy method is to utilize mechanochemistry, such as the use of a shaker mixer mill for grinding operation as well as hand grinding by mortar and pestle, helping mixing materials into fine powder thus helping the insoluble compounds and protein mixture to be water dispersible. Also, the liquid assisting ball milling exfoliation was achieved by high impact force to fracture the graphite and shear force to exfoliate the layered structure. In this thesis, interesting new properties of protein hybrids have been studied mainly focusing on two aspects: 1) by co-grinding hydrophobic dyes and proteins, a protein hydrophobic compound hybrid is obtained and following by inducing fibrils formation. The resulting functionalized PNFs thus have the fibril structure properties as well as the properties from incorporated compounds. By further self-assembly the functionalized PNFs to films, the materials transfer from micro to macrostructure. Besides, the protein act as surfactant for disperse hydrophobic probes for detection of Cu2+. 2) by milling the protein or protein nanofibrils dispersion with graphite, Graphene nanoplatelets (GNPs) is exfoliated and the GNPs ink functionalized by PNFs converted to devices and shows good properties for thermoelectrical voltage generation and water evaporation induced energy generation. Throughout the study of the thesis, we summarize how the protein hybrid materials was investigated. By demonstrating dyes functionalized PNFs and further PNFs films, as well as GNPs-PNFs hybrids acting as active materials on thermoelectrical and evaporation induced energy generating devices, we show the protein hybrid materials a promise new breakthrough in optical or energy generating aspects.

Abstract [sv]

Proteiner hänger intimt samman med biologi; proteiner är emellertid också mycket intressanta ur ett materialvetenskapligt perspektiv. Många proteiner har kapaciteten att organisera sig själv till ordnade nanomaterial. Dessa processer kan ske in vivo vilket resulterar i så kallade amyloidfibrer, ofta förknippade med sjukdomar som Alzheimers. Flera exempel finns dock där organismer använder liknande material för funktionella ändamål. Även många icke-patogena proteiner kan självorganiseras in vitro vilket resulterar i amyloid-liknande fiber som härefter kommer benämnas protein-nanofibrer (PNF). Självorganisation av proteiner ger lätt tillgång till avancerade nanomaterial med attraktiva egenskaper såsom en hög aspektratio, stor aktiva ytarea, hög stabilitet och modifierbara ytegenskaper. PNF kan bildas från en rad olika proteiner som kan isoleras från naturliga och förnyelsebara råvaror. PNF kan således utgöra en källa till billiga nanomaterial som kan erhållas från förnyelsebara källor. Det skulle emellertid vara önskvärt att utöka möjliga tillämpningar för sådana material till att omfatta högteknologiska applikationer som involverar t.ex. emission av ljus eller elektrisk konduktivitet. En möjlighet att möjliggöra sådana tillämpningar är att funktionalisera PNF med andra material såsom fluoroforer eller elektriskt ledande material. En enkel metod är att använda så kallad mekanokemi, där malning möjliggör blandning av protein och hydrofoba luminescenta föreningar/material till ett fint pulver, vilket gör att proteinet kan dispergera hydrofoba föreningar/material i vatten. Proteinet kan sedan induceras att självorganiseras till PNF som innehåller de hydrofoba materialen. Dessutom kan relaterad metodik användas för att framställa blandningar av proteinfibriller och grafit.

I denna avhandling har olika egenskaper hos funktionaliserade PNF studerats, med huvudsakligt fokus på två typer av processer: 1) genom sammalning av hydrofoba färgämnen och proteiner erhålls en hybrid mellan protein: färgämne som lätt kan omvandlas till PNF. Dessa funktionaliserade PNF kan sedan i sin tur självorganiseras till makroskopiska material såsom strukturellt ordnade tunnfilmer. Den strukturella organisationen av PNF och inkorporerade färgämnen ger materialet egenskaper såsom linjärt polariserad fotoluminescens; 2) genom malning av en PNF-dispersion (i vatten) med grafit, exfolieras grafit till Graphene nanoplatelets (GNP), där PNF hjälper till att dispergera GNP i vatten. De resulterande materialen är elektriskt ledande och kan inkorporeras i komponenter där de aktiva materialen kan omvandla värme eller omgivande värme (genom förångning av vatten) till elektricitet. Vi har därför visat flera olika sätt att berika proteinmaterial och därigenom möjliggöra deras användning i komponenter avsedda för ljusemission eller elproduktion. På lång sikt kan detta möjliggöra utveckling av avancerad teknik där viktiga komponenter tillverkas från proteiner isolerade från hållbara naturliga källor eller industriella avfallsströmmar.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2020. , p. 66
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2087
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-168900ISBN: 9789179298128 (print)OAI: oai:DiVA.org:liu-168900DiVA, id: diva2:1463608
Public defence
2020-09-30, TEMCAS, T-Building, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2020-09-02 Created: 2020-09-02 Last updated: 2020-09-02Bibliographically approved
List of papers
1. Preparation of functionalized protein materials assisted by mechanochemistry
Open this publication in new window or tab >>Preparation of functionalized protein materials assisted by mechanochemistry
2018 (English)In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 53, no 19, p. 13719-13732Article in journal (Refereed) Published
Abstract [en]

Herein, we investigate the suitability of hen egg-white lysozyme (HEWL) as a protein matrix for dispersal of various hydrophobic dyes. Moreover, we investigate the use of a mixer mill for grinding operation as an alternative to hand grinding by mortar and pestle. HEWL and various dyes are mixed by mechanochemistry, and the resulting composite material is dissolved in aqueous acid. The samples are then exposed to conditions promoting self-assembly of HEWL into protein nanofibrils (PNFs). The effect of PNF formation on dye photophysics is investigated by spectroscopic examination by absorption and luminescence spectroscopy, and product morphology is examined by scanning electron microscopy. The self-assembly process results in protein nanofibrils functionalized with luminescent dyes. Such structures may find future applications in various devices for light emission. In addition, we demonstrate that the anticancer drug camptothecin can be incorporated into protein nanofibrils giving materials that can find application as drug delivery agents.

Place, publisher, year, edition, pages
SPRINGER, 2018
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:liu:diva-150199 (URN)10.1007/s10853-018-2461-7 (DOI)000440047900036 ()
Note

Funding Agencies|China Scholarship Council; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009-00971]

Available from: 2018-08-22 Created: 2018-08-22 Last updated: 2020-09-02

Open Access in DiVA

No full text in DiVA

Authority records

Wang, Lei

Search in DiVA

By author/editor
Wang, Lei
By organisation
Biomolecular and Organic ElectronicsFaculty of Science & Engineering
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 357 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf