liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deep Gaussian Markov Random Fields
Linköping University, Department of Computer and Information Science, The Division of Statistics and Machine Learning. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Computer and Information Science, The Division of Statistics and Machine Learning. Linköping University, Faculty of Science & Engineering.
2020 (English)In: Proceedings of the 37th International Conference on Machine Learning / [ed] Hal Daumé III, Aarti Singh, PMLR , 2020, Vol. 119, p. 8916-8926Conference paper, Published paper (Refereed)
Abstract [en]

Gaussian Markov random fields (GMRFs) are probabilistic graphical models widely used in spatial statistics and related fields to model dependencies over spatial structures. We establish a formal connection between GMRFs and convolutional neural networks (CNNs). Common GMRFs are special cases of a generative model where the inverse mapping from data to latent variables is given by a 1-layer linear CNN. This connection allows us to generalize GMRFs to multi-layer CNN architectures, effectively increasing the order of the corresponding GMRF in a way which has favorable computational scaling. We describe how well-established tools, such as autodiff and variational inference, can be used for simple and efficient inference and learning of the deep GMRF. We demonstrate the flexibility of the proposed model and show that it outperforms the state-of-the-art on a dataset of satellite temperatures, in terms of prediction and predictive uncertainty.

Place, publisher, year, edition, pages
PMLR , 2020. Vol. 119, p. 8916-8926
Series
Proceedings of Machine Learning Research, ISSN 2640-3498 ; 119
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:liu:diva-171582OAI: oai:DiVA.org:liu-171582DiVA, id: diva2:1503327
Conference
International Conference on Machine Learning, 13-18 July 2020, Virtual
Available from: 2020-11-24 Created: 2020-11-24 Last updated: 2020-11-24
In thesis
1. Scalable Bayesian spatial analysis with Gaussian Markov random fields
Open this publication in new window or tab >>Scalable Bayesian spatial analysis with Gaussian Markov random fields
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Skalbar Bayesiansk spatial analys med Gaussiska Markov-fält
Abstract [en]

Accurate statistical analysis of spatial data is important in many applications. Failing to properly account for spatial autocorrelation may often lead to false conclusions. At the same time, the ever-increasing sizes of spatial datasets pose a great computational challenge, as many standard methods for spatial analysis are limited to a few thousand data points.

In this thesis, we explore how Gaussian Markov random fields (GMRFs) can be used for scalable analysis of spatial data. GMRFs are closely connected to the commonly used Gaussian processes, but have sparsity properties that make them computationally cheap both in time and memory. The Bayesian framework enables a GMRF to be used as a spatial prior, comprising the assumption of smooth variation over space, and gives a principled way to estimate the parameters and propagate uncertainty.

We develop new algorithms that enable applying GMRF priors in 3D to the brain activity inherent in functional magnetic resonance imaging (fMRI) data, with millions of observations. We show that our methods are both faster and more accurate than previous work. A method for approximating selected elements of the inverse precision matrix (i.e. the covariance matrix) is also proposed, which is important for evaluating the posterior uncertainty. In addition, we establish a link between GMRFs and deep convolutional neural networks, which have been successfully used in countless machine learning tasks for images, resulting in a deep GMRF model. Finally, we show how GMRFs can be used in real-time robotic search and rescue operations, for modeling the spatial distribution of injured persons.

Abstract [sv]

Tillförlitlig statistisk analys av spatiala data är viktigt inom många tillämpningar. Om inte korrekt hänsyn tas till spatial autokorrelation kan det ofta leda till felaktiga slutsatser. Samtidigt ökar ständigt storleken på de spatiala datamaterialen vilket utgör en stor beräkningsmässig utmaning, eftersom många standardmetoder för spatial analys är begränsade till några tusental datapunkter.

I denna avhandling utforskar vi hur Gaussiska Markov-fält (eng: Gaussian Markov random fields, GMRF) kan användas för mer skalbara analyser av spatiala data. GMRF-modeller är nära besläktade med de ofta använda Gaussiska processerna, men har gleshetsegenskaper som gör dem beräkningsmässigt effektiva både vad gäller tids- och minnesåtgång. Det Bayesianska synsättet gör det möjligt att använda GMRF som en spatial prior som innefattar antagandet om långsam spatial variation och ger ett principiellt tillvägagångssätt för att skatta parametrar och propagera osäkerhet.

Vi utvecklar nya algoritmer som gör det möjligt att använda GMRF-priors i 3D för den hjärnaktivitet som indirekt kan observeras i hjärnbilder framtagna med tekniken fMRI, som innehåller milliontals datapunkter. Vi visar att våra metoder är både snabbare och mer korrekta än tidigare forskning. En metod för att approximera utvalda element i den inversa precisionsmatrisen (dvs. kovariansmatrisen) framförs också, vilket är viktigt för att kunna evaluera osäkerheten i posteriorn. Vidare gör vi en koppling mellan GMRF och djupa neurala faltningsnätverk, som har använts framgångsrikt för mängder av bildrelaterade problem inom maskininlärning, vilket mynnar ut i en djup GMRF-modell. Slutligen visar vi hur GMRF kan användas i realtid av autonoma drönare för räddningsinsatser i katastrofområden för att modellera den spatiala fördelningen av skadade personer.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2020. p. 53
Series
Linköping Studies in Arts and Sciences, ISSN 0282-9800 ; 790Linköping Studies in Statistics, ISSN 1651-1700 ; 15
Keywords
Spatial statistics, Bayesian statistics, Gaussian Markov random fields, fMRI, Machine learning, Spatial statistik, Bayesiansk statistik, Gaussiska Markov-fält, fMRI, Maskininlärning
National Category
Probability Theory and Statistics
Identifiers
urn:nbn:se:liu:diva-165872 (URN)10.3384/diss.diva-165872 (DOI)9789179298180 (ISBN)
Public defence
2020-09-18, Ada Lovelace, B Building, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2020-08-17 Created: 2020-06-01 Last updated: 2020-11-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Electronic full text

Authority records

Sidén, PerLindsten, Fredrik

Search in DiVA

By author/editor
Sidén, PerLindsten, Fredrik
By organisation
The Division of Statistics and Machine LearningFaculty of Science & Engineering
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 322 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf