Open this publication in new window or tab >>2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The problem of visualising multivariate data and tensor fields inherits its complexity from the data it targets. By definition, complex data is "hard to separate, analyse, or solve"1. This becomes evident through the fact that methods for "simple" data such as scalars and vectors do not trivially extend to multivariate data and tensors. In the light of increasing number of output variables from simulation models and measurements, this lack of methods leads to a limited choice in the analysis and to a lower fidelity of the analysis. In addition, split application of established methods to a subset of the data, for example the separate rendering of isosurfaces for the different scalar fields contained in multivariate data, brings about a number of challenges and pitfalls.
In this work I present several approaches to extending existing methods for scalar field visualisation and analysis to multivariate data and, in some cases by extension, tensor fields. Specifically, I have investigated the extraction of isosurfaces from multivariate data, the topological analysis of multivariate data and tensor fields, and the design of transfer functions for tensor fields.
Isosurfaces (contours) are a widely used visualisation modality. They can be used to intuitively highlight regions of interest and are the goto choice for taking snapshots during large-scale in-situ simulations to verify results. In domains such as meteorology where simulations yield a number of output variables for pressure, temperature, precipitation, etc., methods for visualising multivariate isosurfaces are needed. Feature level sets offer such a method by interpreting an isosurface as the result of an intersection of the isovalue with the data in the domain. From this, we expand the notion of isovalues, in this context called traits, and isosurfaces to arbitrary dimensionality.
An intermediate product of the calculation of feature level sets is the distance field defining every data point’s distance towards the trait. Given this distance field, we compute the merge tree for it and thereby enable topological analysis of multivariate data. The choice of merge trees comes naturally as minima in the distance field correspond to regions closest to the trait.
The concept of derived fields as input is also used in our approach to topological analysis of tensor fields. Special attention needs to be paid to the non-linear behaviour of derived vector and scalar fields. We use the field of eigenvectors derived from the tensor field to determine cells containing degenerate points in tensor fields and insert zero-valued points in the corresponding anisotropy field. This process yields a scalar field which can subsequently be used as input for further topological analysis.Another challenge when it comes to the visualisation of tensor fields is the design of transfer functions in the context of volume rendering. This is because of the high dimensional entity that is a tensor and its non-linear derivatives. We span a shape space which is populated by representatives which visually encode the tensor. This allows the user to steer the rendering by selecting the desired "shape" of the tensor rather than adjusting a slider for a derived scalar value.
1 Merriam-Webster. Complex. In Merriam-Webster dictionary (Merriam-Webster.com). Retrieved December 1st, 2024, from https://www.merriam-webster.com/dictionary/complex
Abstract [sv]
Problemet med att visualisera multivariat data och tensorfält beror på komplexiteten hos själva datan. Enligt definitionen består komplexa data av "många delar som hänger samman på ett svåröverskådligt sätt"2. Detta blir uppenbart genom det faktum att metoder för 'enkla' data, såsom skalärer och vektorer, inte på ett trivialt sätt går att utvidga till multivariat data och tensorer. På grund av det ökande antalet outputvariabler från simuleringsmodeller och mätningar leder denna brist till ett begränsat val av metoder i analysen och till en lägre analystrohet. Dessutom medför en uppdelad tillämpning av etablerade metoder på en delmängd av data, till exempel separat rendering av isoytor för de olika skalära fälten som ingår i multivariat data, ett antal utmaningar och fallgropar.
I detta arbete presenterar jag flera tillvägagångssätt för att utvidga befintliga metoder för skalärfältsvisualisering och analys till multivariat data och, i vissa fall, i förlängningen, tensorfält. Specifikt har jag undersökt extraktion av isoytor från multivariat data, den topologiska analysen av multivariat data och tensorfält samt designen av överföringsfunktioner för tensorfält.
Isoytor (konturer) är en välkänd visualiseringsteknik. De kan användas för att intuitivt lyfta fram områden av intresse och är det naturliga valet för att ta ögonblicksbilder under storskaliga simuleringar på plats för att verifiera resultat. Inom områden som meteorologi där simuleringar ger ett antal utdatavariabler för tryck, temperatur, nederbörd etc. behövs metoder för att visualisera multivariata isoytor. Feature level sets erbjuder en sådan metod genom att tolka en isoyta som resultatet av en skärning av isovärdet med data i domänen. Genom detta utökar vi begreppet isovärden, i detta sammanhang kallade traits, och isoytor till godtycklig dimensionalitet.
En mellanprodukt av beräkningen av feature level sets är avståndsfältet som definierar varje datapunkts avstånd till trait:en. Med tanke på detta avståndsfält beräknar vi merge trees för det och möjliggör därigenom topologisk analys av multivariata data. Valet av merge trees kommer naturligt då minima i avståndsfältet motsvarar regioner närmast trait:en.
Konceptet med beräknade fält som input används också i vårt förhållningssätt till topologisk analys av tensorfält. Det icke-linjära beteendet hos härledda/uträknade vektor- och skalära fält bör här ägnas särskild uppmärksamhet. Vi använder fältet av egenvektorer som härleds från tensorfältet för att bestämma celler som innehåller degenererade punkter i tensorfält och infogar nollvärdespunkter i motsvarande anisotropifält. Denna process ger ett skalärt fält som sedan kan användas som input för ytterligare topologisk analys.
En annan utmaning när det kommer till visualisering av tensorfält är utformningen av överföringsfunktioner i samband med volymrendering. Detta beror på den högdimensionella enheten som är en tensor och dess icke-linjära derivator. Vi erbjuder ett bredd designutrymme för att visuellt koda tensorn. Detta gör att användaren kan styra renderingen genom att välja önskad "form" av tensorn istället för att justera en skjutreglage för ett härlett skalärt värde.
2 Svensk ordbok. Komplex. I Svenska Akademiens ordbok (svenska.se). Hämtad den 1:a december 2024 från https://svenska.se/so/?id=140703_ 1&pz=3
Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2024. p. 272
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2241
National Category
Other Computer and Information Science
Identifiers
urn:nbn:se:liu:diva-210419 (URN)10.3384/9789179294052 (DOI)9789179294045 (ISBN)9789179294052 (ISBN)
Public defence
2025-01-22, K1, Kåkenhus, Campus Norrköping, Norrköping, 10:00 (English)
Opponent
2024-12-132024-12-132024-12-13Bibliographically approved